Home
Class 12
MATHS
sum(r=1)^(10)(r+{(r)/(7)}+{(2r)/(7)})= w...

`sum_(r=1)^(10)(r+{(r)/(7)}+{(2r)/(7)})=` where `{x} rarr` fractional part function

A

`(445)/(7)`

B

`(454)/(7)`

C

`(447)/(17)`

D

`(447)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given summation \( \sum_{r=1}^{10} \left( r + \{ \frac{r}{7} \} + \{ \frac{2r}{7} \} \right) \), we can break it down into three separate summations: 1. \( \sum_{r=1}^{10} r \) 2. \( \sum_{r=1}^{10} \{ \frac{r}{7} \} \) 3. \( \sum_{r=1}^{10} \{ \frac{2r}{7} \} \) ### Step 1: Calculate \( \sum_{r=1}^{10} r \) The sum of the first \( n \) natural numbers is given by the formula: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] For \( n = 10 \): \[ \sum_{r=1}^{10} r = \frac{10(10+1)}{2} = \frac{10 \times 11}{2} = 55 \] ### Step 2: Calculate \( \sum_{r=1}^{10} \{ \frac{r}{7} \} \) The fractional part function \( \{ x \} = x - \lfloor x \rfloor \). We need to find \( \{ \frac{r}{7} \} \) for \( r = 1, 2, \ldots, 10 \): - For \( r = 1 \): \( \{ \frac{1}{7} \} = \frac{1}{7} \) - For \( r = 2 \): \( \{ \frac{2}{7} \} = \frac{2}{7} \) - For \( r = 3 \): \( \{ \frac{3}{7} \} = \frac{3}{7} \) - For \( r = 4 \): \( \{ \frac{4}{7} \} = \frac{4}{7} \) - For \( r = 5 \): \( \{ \frac{5}{7} \} = \frac{5}{7} \) - For \( r = 6 \): \( \{ \frac{6}{7} \} = \frac{6}{7} \) - For \( r = 7 \): \( \{ \frac{7}{7} \} = 0 \) - For \( r = 8 \): \( \{ \frac{8}{7} \} = \frac{1}{7} \) - For \( r = 9 \): \( \{ \frac{9}{7} \} = \frac{2}{7} \) - For \( r = 10 \): \( \{ \frac{10}{7} \} = \frac{3}{7} \) Now, summing these values: \[ \sum_{r=1}^{10} \{ \frac{r}{7} \} = \frac{1}{7} + \frac{2}{7} + \frac{3}{7} + \frac{4}{7} + \frac{5}{7} + \frac{6}{7} + 0 + \frac{1}{7} + \frac{2}{7} + \frac{3}{7} \] This simplifies to: \[ = \frac{1 + 2 + 3 + 4 + 5 + 6 + 0 + 1 + 2 + 3}{7} = \frac{27}{7} \] ### Step 3: Calculate \( \sum_{r=1}^{10} \{ \frac{2r}{7} \} \) Now we find \( \{ \frac{2r}{7} \} \): - For \( r = 1 \): \( \{ \frac{2}{7} \} = \frac{2}{7} \) - For \( r = 2 \): \( \{ \frac{4}{7} \} = \frac{4}{7} \) - For \( r = 3 \): \( \{ \frac{6}{7} \} = \frac{6}{7} \) - For \( r = 4 \): \( \{ \frac{8}{7} \} = \frac{1}{7} \) - For \( r = 5 \): \( \{ \frac{10}{7} \} = \frac{3}{7} \) - For \( r = 6 \): \( \{ \frac{12}{7} \} = \frac{5}{7} \) - For \( r = 7 \): \( \{ \frac{14}{7} \} = 0 \) - For \( r = 8 \): \( \{ \frac{16}{7} \} = \frac{2}{7} \) - For \( r = 9 \): \( \{ \frac{18}{7} \} = \frac{4}{7} \) - For \( r = 10 \): \( \{ \frac{20}{7} \} = \frac{6}{7} \) Summing these values: \[ \sum_{r=1}^{10} \{ \frac{2r}{7} \} = \frac{2}{7} + \frac{4}{7} + \frac{6}{7} + \frac{1}{7} + \frac{3}{7} + \frac{5}{7} + 0 + \frac{2}{7} + \frac{4}{7} + \frac{6}{7} \] This simplifies to: \[ = \frac{2 + 4 + 6 + 1 + 3 + 5 + 0 + 2 + 4 + 6}{7} = \frac{33}{7} \] ### Final Calculation Now we combine all three parts: \[ \sum_{r=1}^{10} \left( r + \{ \frac{r}{7} \} + \{ \frac{2r}{7} \} \right) = 55 + \frac{27}{7} + \frac{33}{7} \] Combine the fractional parts: \[ = 55 + \frac{27 + 33}{7} = 55 + \frac{60}{7} = 55 + 8.57 \approx 63.57 \] To express this as a single fraction: \[ = \frac{55 \times 7 + 60}{7} = \frac{385 + 60}{7} = \frac{445}{7} \] Thus, the final answer is: \[ \sum_{r=1}^{10} \left( r + \{ \frac{r}{7} \} + \{ \frac{2r}{7} \} \right) = \frac{445}{7} \]

To solve the given summation \( \sum_{r=1}^{10} \left( r + \{ \frac{r}{7} \} + \{ \frac{2r}{7} \} \right) \), we can break it down into three separate summations: 1. \( \sum_{r=1}^{10} r \) 2. \( \sum_{r=1}^{10} \{ \frac{r}{7} \} \) 3. \( \sum_{r=1}^{10} \{ \frac{2r}{7} \} \) ### Step 1: Calculate \( \sum_{r=1}^{10} r \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum_(r=1)^(10) (r+2)(3r+1).

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) - alpha e^(beta) . Then, |alpha + beta| is equal to.......

If f:R rarr R and f(x)=(sin(pi{x}))/(x^(4)+3x^(2)+7) where {} is a fractional part of x, then

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

If x=10 sum_(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] denotes gratest integer function)

Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fractional part of x. Then, which of the following is/are correct?

sum_(r=1)^(2002+(2k-1))cos((2r pi)/(7))+i sin((2r pi)/(7))=0 then the non negative integtral values of k less than 10 may be

sum_(r=0)^(10) r.^(10)C_(r),3^(r).(-2)^(10-r) is -