Home
Class 12
MATHS
4x + 3y + 2z =1 x-y + 3z = 4 2x + 5y...

`4x + 3y + 2z =1`
`x-y + 3z = 4`
`2x + 5y - 4z = 6` has n solution than n =

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of solutions \( n \) for the given system of equations, we will analyze the equations step by step using determinants. ### Given Equations: 1. \( 4x + 3y + 2z = 1 \) (Equation 1) 2. \( x - y + 3z = 4 \) (Equation 2) 3. \( 2x + 5y - 4z = 6 \) (Equation 3) ### Step 1: Formulate the Coefficient Matrix The coefficient matrix \( A \) for the system of equations is: \[ A = \begin{bmatrix} 4 & 3 & 2 \\ 1 & -1 & 3 \\ 2 & 5 & -4 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix \( A \) We will calculate the determinant \( |A| \) using the formula for the determinant of a 3x3 matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 4, b = 3, c = 2 \) - \( d = 1, e = -1, f = 3 \) - \( g = 2, h = 5, i = -4 \) Calculating the determinant: \[ |A| = 4((-1)(-4) - (3)(5)) - 3((1)(-4) - (3)(2)) + 2((1)(5) - (-1)(2)) \] \[ = 4(4 - 15) - 3(-4 - 6) + 2(5 + 2) \] \[ = 4(-11) - 3(-10) + 2(7) \] \[ = -44 + 30 + 14 \] \[ = -44 + 44 = 0 \] ### Step 3: Analyze the Determinant Since \( |A| = 0 \), we need to check for the conditions of the system of equations: - If \( |A| = 0 \), the system may have either no solutions or infinitely many solutions. ### Step 4: Calculate the Determinants for the Conditions We need to calculate \( \Delta_1, \Delta_2, \Delta_3 \) to determine the nature of the solutions. #### Determinant \( \Delta_1 \): Replace the first column of \( A \) with the constants from the right-hand side of the equations: \[ \Delta_1 = \begin{vmatrix} 1 & 3 & 2 \\ 4 & -1 & 3 \\ 6 & 5 & -4 \end{vmatrix} \] Calculating \( \Delta_1 \): \[ = 1((-1)(-4) - (3)(5)) - 3((4)(-4) - (3)(6)) + 2((4)(5) - (-1)(6)) \] \[ = 1(4 - 15) - 3(-16 - 18) + 2(20 + 6) \] \[ = 1(-11) + 3(34) + 2(26) \] \[ = -11 + 102 + 52 = 143 \] #### Determinant \( \Delta_2 \): Replace the second column of \( A \) with the constants: \[ \Delta_2 = \begin{vmatrix} 4 & 1 & 2 \\ 1 & 4 & 3 \\ 2 & 6 & -4 \end{vmatrix} \] Calculating \( \Delta_2 \): \[ = 4(4 \cdot -4 - 3 \cdot 6) - 1(1 \cdot -4 - 3 \cdot 2) + 2(1 \cdot 6 - 4 \cdot 2) \] \[ = 4(-16 - 18) - 1(-4 - 6) + 2(6 - 8) \] \[ = 4(-34) + 10 - 4 = -136 + 10 - 4 = -130 \] #### Determinant \( \Delta_3 \): Replace the third column of \( A \) with the constants: \[ \Delta_3 = \begin{vmatrix} 4 & 3 & 1 \\ 1 & -1 & 4 \\ 2 & 5 & 6 \end{vmatrix} \] Calculating \( \Delta_3 \): \[ = 4((-1)(6) - (4)(5)) - 3((1)(6) - (4)(2)) + 1((1)(5) - (-1)(2)) \] \[ = 4(-6 - 20) - 3(6 - 8) + 1(5 + 2) \] \[ = 4(-26) - 3(-2) + 7 = -104 + 6 + 7 = -91 \] ### Step 5: Analyze the Results - \( \Delta_1 \neq 0 \) - \( \Delta_2 \neq 0 \) - \( \Delta_3 \neq 0 \) Since \( \Delta_1 \neq 0 \) and \( |A| = 0 \), the system of equations has no solutions. ### Conclusion Thus, the value of \( n \) is: \[ n = 0 \]

To determine the number of solutions \( n \) for the given system of equations, we will analyze the equations step by step using determinants. ### Given Equations: 1. \( 4x + 3y + 2z = 1 \) (Equation 1) 2. \( x - y + 3z = 4 \) (Equation 2) 3. \( 2x + 5y - 4z = 6 \) (Equation 3) ### Step 1: Formulate the Coefficient Matrix ...
Promotional Banner

Similar Questions

Explore conceptually related problems

2x + 3y + 3z = 5, x-2y + z = -4,3x-y-2z = 3

2x = 3y = 4z, x: y: z

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

Find the angle between the planes : (i) 3 x - 6y - 2z = 7 " " 2x + y - 2z = 5 (ii) 4 x + 8y + z = 8 " " and y + z = 4 (iii) 2 x - y + z =6 " " and x + y + 2z = 7 .

Add: 5x - 8y + 2z, 3z - 4y - 2x, 6y - z - x and 3x - 2z - 3y

2x-3y+5z=16, 3x+ 2y-4z= -4, x + y - 2z =- 3.

The planes 2x - y + 4z = 3 and 5x - 2.5y + 10z = 6 are :