Home
Class 12
MATHS
If [a, b] is Range of function f(x) = si...

If [a, b] is Range of function `f(x) = sin^(-1)x + cos^(-1)x + tan^(-1)x` then no. of roots of the equation `1-|x| = tan^(-1)x` is [b] + k then k =

Text Solution

Verified by Experts

The correct Answer is:
0

Domain of `sin^(-1)x + cos^(-1) x + tan^(-1) x` is [-1,1]
So range is `[(pi)/(2)-(pi)/(4),(pi)/(2)+(pi)/(4)] = [(pi)/(4),(3pi)/(4)]`
`b = (3pi)/(4)`
`rArr [b] = 2`
Now no. of solution of `1-|x| = tan^(-1)x`
2 solutions.
Promotional Banner

Similar Questions

Explore conceptually related problems

tan(sin^(-1)x+cos^(-1)x)

Range of sin^(-1)x+cos^(-1)x+tan^(-1)x is

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x

The range of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x is

Range of the function f(x)=sin^(-1)x+2tan^(-1)x+x^(2)+4x+3 is

The range of the function f(x) = sec^(-1) ( x) + tan ^(-1) (x) ,is

The range of the function: f(x)=tan^(-1)x+(1)/(2)sin^(-1)x

The function f(x)=tan^(-1)(tan x) is

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Range of f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x is