Home
Class 12
PHYSICS
An electric dipole of moment vecP=(hati+...

An electric dipole of moment `vecP=(hati+3hatj-5hatk)xx10^(-19)Cm` is kept in a electric field `vecE=(2hati-3hatj+2hatk)xx10^(5)V/m`. Find torque experienced by dipole.

A

`(9hati+12hatj-9hatk)xx10^(-14)N-m`

B

`(9hati+12hatj+9hatk)xx10^(-14)N-m`

C

`(-9hati-12hatj-9hatk)xx10^(-14)N-m`

D

`(-9hati+12hatj-9hatk)xx10^(-14)N-m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque experienced by an electric dipole in an electric field, we can use the formula for torque (\(\vec{\tau}\)) given by the cross product of the dipole moment (\(\vec{P}\)) and the electric field (\(\vec{E}\)): \[ \vec{\tau} = \vec{P} \times \vec{E} \] ### Step-by-Step Solution: 1. **Identify the dipole moment and electric field vectors:** - Given dipole moment: \[ \vec{P} = (1\hat{i} + 3\hat{j} - 5\hat{k}) \times 10^{-19} \, \text{Cm} \] - Given electric field: \[ \vec{E} = (2\hat{i} - 3\hat{j} + 2\hat{k}) \times 10^{5} \, \text{V/m} \] 2. **Set up the cross product:** - We will calculate \(\vec{P} \times \vec{E}\) using the determinant of a matrix: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 \times 10^{-19} & 3 \times 10^{-19} & -5 \times 10^{-19} \\ 2 \times 10^{5} & -3 \times 10^{5} & 2 \times 10^{5} \end{vmatrix} \] 3. **Calculate the determinant:** - Expanding the determinant: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 3 \times 10^{-19} & -5 \times 10^{-19} \\ -3 \times 10^{5} & 2 \times 10^{5} \end{vmatrix} - \hat{j} \begin{vmatrix} 1 \times 10^{-19} & -5 \times 10^{-19} \\ 2 \times 10^{5} & 2 \times 10^{5} \end{vmatrix} + \hat{k} \begin{vmatrix} 1 \times 10^{-19} & 3 \times 10^{-19} \\ 2 \times 10^{5} & -3 \times 10^{5} \end{vmatrix} \] 4. **Calculate each of the 2x2 determinants:** - For \(\hat{i}\): \[ = (3 \times 10^{-19})(2 \times 10^{5}) - (-5 \times 10^{-19})(-3 \times 10^{5}) = 6 \times 10^{-14} - 15 \times 10^{-14} = -9 \times 10^{-14} \] - For \(\hat{j}\): \[ = (1 \times 10^{-19})(2 \times 10^{5}) - (-5 \times 10^{-19})(2 \times 10^{5}) = 2 \times 10^{-14} + 10 \times 10^{-14} = 12 \times 10^{-14} \] - For \(\hat{k}\): \[ = (1 \times 10^{-19})(-3 \times 10^{5}) - (3 \times 10^{-19})(2 \times 10^{5}) = -3 \times 10^{-14} - 6 \times 10^{-14} = -9 \times 10^{-14} \] 5. **Combine the results:** - Thus, the torque vector is: \[ \vec{\tau} = (-9 \times 10^{-14})\hat{i} - (12 \times 10^{-14})\hat{j} + (-9 \times 10^{-14})\hat{k} \] - Therefore, we can write: \[ \vec{\tau} = -9\hat{i} - 12\hat{j} - 9\hat{k} \times 10^{-14} \, \text{N m} \] ### Final Answer: \[ \vec{\tau} = (-9\hat{i} - 12\hat{j} - 9\hat{k}) \times 10^{-14} \, \text{N m} \]

To find the torque experienced by an electric dipole in an electric field, we can use the formula for torque (\(\vec{\tau}\)) given by the cross product of the dipole moment (\(\vec{P}\)) and the electric field (\(\vec{E}\)): \[ \vec{\tau} = \vec{P} \times \vec{E} \] ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

A dipole of moment vecp = 10^(-7) (5hati + hatj - 2hatk) C is placed in an electric field vecE = 10^(7) (hati + hatj + hatk) V m^(-1) . Find the torque experienced .

Electric dipole of moment vecp = phati is kept at a point (x,y) in an electric field vecE = 4xy^2hati + 4x^2yhatj . Find the force on the dipole.

An electric dipole with dipole moment vec p=(3hati +4hatj) C-m is kept in electric field vec E=0.4hatk N/C .What is the torque acting on it and the potential energy of the dipole?

A tiny electric dipole of dipole moment vecP = P_0hatj is placed at point (l,0). There exists an electric field vecE = 2ax^2hati + (2by^2 + 2cy)hatj .

A magnetic dipole of dipole moment 10(hati+hatj+hatk) is placed in a magnetic field 0.6hati+0.4hatj+0.5hatk force acting on the dipole is -

An electric charge +q moves with velocity vecv=3hati+4hatj+hatk , in an electromagnetic field given by vecE=3hati+hatj+2hatk , vecB=hati+hatj-3hatk . The y-component of the force experienced by +q is

An electric dipole of dipole moment 4xx10^(-5) Cm is placed in a uniform electric field of 10^(-3) N//C making an angle of 30^(@) with the direction of the field. Determine the torque exerted by the electric field on the dipole.

An electric charge +q moves with velocity vecv=3hati+4hatj+hatk ,in an electromagnetic field given by: vecE=3hati+hatj+2hatk and vecB=hati+hatj+3hatk .The y -component of the force experienced by +q is: