Home
Class 12
MATHS
The value of the definite integral int(2...

The value of the definite integral `int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx` is equal to

A

`pi^2/8`

B

`pi^2/4`

C

`pi^2/2`

D

`pi^2`

Text Solution

Verified by Experts

The correct Answer is:
B

`:. sin^(-1) (cos x ) + cos^(-1) (sinx)` is periodic with period `2pi`, then
`int_(2pi)^(5pi//2) (sin^(-1) (cosx) + cos^(-1)(sinx))dx`
`=int_(0)^(pi//2) (sin^(-1) {cos(pi/2-2)} + cos^(-1){sin(pi/2-x)})dx`
`=int_(0)^(pi//2) (sin^(-1)sinx + cos^(-1)cosx)dx`
`=2int_0^(pi//2) xdx = 2{x^2/2}_0^(pi/2) =pi^2/4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

The value of the definite integral int_(0)^((pi)/(2))(sin^(-1)(cos x)+cos^(-1)(cos x))dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral,int_(0)^((pi)/(2))(sin5x)/(sin x)dx is

Given int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=ln2 then the value of the definite integral int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to

The value of the definite integral int_(pi//24)^(5pi//24)(dx)/(1+root(3)(tan2x)) is :

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to

The value of the definite integral int _(0)^(pi//2) ((1+ sin 3x)/(1+2 sin x)) dx equals to:

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to