Home
Class 12
MATHS
If alpha, beta are roots of 375x^(2)-25x...

If `alpha, beta` are roots of `375x^(2)-25x-2=0` and `s_(n)=alpha^(n)+beta^(n)`, then `lim_(n to oo) sum_(r=1)^(n)S_(r)` is

A

`7/116`

B

`1/12`

C

`29/358`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Since ` alpha, beta `are the roots of
`375x^2 - 25x -2 = 0 :. alpha + beta = 25/375 = 1/15`
and `alpha, beta - 2/375 :. lim_(nto oo)sum_(r=1)^n S_r = lim_(n tooo)sum_(r =1)^n (alpha^r +beta^r)`
`=(alpha + alpha^2 + alpha^3 +... ....oo) +(beta+beta^2 +beta^3 +.......oo)`
`=alpha/(1 -alpha) + beta/(1 -beta) = (alpha- alphabeta + beta - alphabeta)/((1-alpha)(1-beta))`
`=(alpha +beta- 2alphabeta)/(1 - (alpha+beta) + alphabeta) =(1/15 + 4/375)/(1 -1/15 - 2/375)`
`=(25 +4)/(375 - 25-2) =29/348 =1/12`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

if alpha,beta be roots of equation 375x^(2)-25x-2=0 and s_(n)=alpha^(n)+beta^(n) then lim_(n rarr oo)(sum_(r=1)^(n)S_(r))=......

If alpha and beta are roots of x^(2)-x+2=0 and S_(n).=alpha^(n)+beta^(n),n in N ,then value of (sum_(n=1)^(5)s_(n))/(sum_(n=1)^(4)alpha^(n)+sum_(n=1)^(4)beta^(n)+7) is

Knowledge Check

  • If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n)=V_(n) then

    A
    `V_(n+1)=aV_(n) +bV_(n-1)`
    B
    `V_(n+1) =aV_(n)+aV_(n-1)`
    C
    `V_(n+1)=aV_(n)-bV_(n-1)`
    D
    none of these
  • If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

    A
    4
    B
    3
    C
    5
    D
    7
  • If alpha, beta are the roots of 6x^(2)-2x+1=0 and s_(x) =alpha^(n)+beta^(n) then underset(n rarr oo)Lt underset (r=1)overset(n)Sigma s_(r) is

    A
    `(5)/(17)`
    B
    0
    C
    `(3)/(37)`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

    If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

    alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then

    If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

    If alpha , beta are the roots of 6x^2-2x+1=0 and s_x=alpha^n+beta^n , then Lt_(n->oo) sum_(r=1)^n s_r is (a)    5/17    (b)    0     (c)    3/37     (d)   none