Home
Class 12
MATHS
If sqrt((1-x^(6)))+sqrt((1-y^(6)))=a(x^(...

If `sqrt((1-x^(6)))+sqrt((1-y^(6)))=a(x^(3)-y^(3))` and `(dy)/(dx)=f(x,y) sqrt(((1-y^(6))/(1-x^(6))))`, then

A

`f(x,y) = y//x`

B

`f(x,y) =y^2//x^2`

C

`f(x,y) = 2y^2//x^2`

D

`f(x,y) = x^2 //y^2`

Text Solution

Verified by Experts

The correct Answer is:
D

Put ` x^(3) = sin theta , y^(3) = sin phi` , then
` (cos theta + cos phi ) = a( sin theta - sin phi)`
`implies 2 cos((theta + phi )/(2)) cos ((theta-phi)/(2)) = 2a cos((theta + phi)/(2)) sin((theta - phi)/(2))`
` implies cot ((theta - phi)/(2)) =a`
`implies (theta - phi)/(2) = cot^(-1) a implies sin^(-1) x^(3) - sin^(-1)y^(3) = 2 cot^(-1)a`
`:.(3x^(2))/(sqrt(1-x^(6)))-(3y^(2))/(sqrt(1-y^(6)))(dy)/(dx) = 0 implies (dy)/(dx) = (x^(2))/(y^(2)) sqrt(((1-y^(6))/(1-x^6)))`
`:. f(x,y) = (x^(2))/(y^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt((1-x^(6)))+sqrt((1-y^(6)))=a(x^(3)-y^(3)) , a is constant and (dy)/(dx)=f(x,y) sqrt(((1-y^(6))/(1-x^(6)))) , then

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,) w h e r e-1x,1a n d-1

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y=tan^(-1){(sqrt(1+x^(3))-sqrt(1-x^(3)))/(sqrt(1+x^(3))+sqrt(1-x^(3)))} , then (dy)/(dx)=(kx^(2))/(sqrt(1-x^(6))) ,where k is equal to