Home
Class 12
MATHS
If veca, vecb, vecc are three non colana...

If `veca, vecb, vecc` are three non colanar, non =null vectors, and `vecr` is any vector in space, then
`(vecaxxvecb)xx(vecrxxvecc)+(vecbxxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)` is equal to

A

`2[veca vecb vecc] vecr`

B

`3[vec a vecb vec c]vecr`

C

`[veca vecb vec c]vecr`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(p)ubrace((veca xx vecb)) xx (vecr xx vecc) + underset(w)ubrace((vecb xx vecc)) xx (vec r xx veca) + (vecc xx veca) xx underset(V)ubrace((vecr xx vecb))`
`= vecP xx (vecr xx vecc) + vecW xx ( vecr xx veca) + ( vecc xx veca) xx vecV`
`=(vecP. vecc) vecr - (vecP. vecr) vecc + (vecW . veca) vecr - (vecW . vecr)veca + (vecc . vecV)veca - (veca.vecV)vecc`
`=[veca vecb vecc]vecr - [veca vecb vecr]vecc + [vecb vecc veca]vecr - [vecb vecc vecr]veca = [vecc vecr vecb ] veca - [veca vecr vecb]vecc=2[veca vecb vecc]vecr`
Promotional Banner

Similar Questions

Explore conceptually related problems

[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))] equal to

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+veccxxveca)xx(vecxxvecb) is equal to

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

Statement 1: Let veca, vecb, vecc be three coterminous edges of a parallelopiped of volume 2 cubic units and vecr is any vector in space then |(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecc.vecc)(vecaxxvecb|=2|vecr| Statement 2: Any vector in space can be written as a linear combination of three non-coplanar vectors.