Home
Class 12
MATHS
Let x^k+y^k =a^k, (a,k gt 0) and (dy)/(d...

Let `x^k+y^k =a^k, (a,k gt 0)` and `(dy)/(dx) +(y/x)^(5//3)=0` , then k=

A

`1/3`

B

`2/3`

C

`-1/3`

D

`-2/3`

Text Solution

Verified by Experts

The correct Answer is:
D

`kx^(k-1) + ky^(k-1) (dy)/(dx)=0`
`(dy)/(dx)=-(k(x^(k-1)))/(k(y^(k-1))) rArr (dy)/(dx) = - (y/x)^(1-k)`
Now by comparing `1-k=5/3`
`k=1-5/3 rArr k=-2/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let (x)^(k) + (y)^(k) = (a)^(k) where a, k > 0 and (dy/dx) +(y/x)^(1/3) = 0 then find k

y(dy)/(dx)+x=k

If xy=1+ log y and k (dy)/(dx)+y^2=0 , then k is

If x^(3) + 3 (ky)^(3) = k^(3) and (dy)/(dx) + (x^(2))/(24 y^(2)) = 0 , then k is (where k gt 0)

If y=k^(x+y), then (dy)/(dx)=

If x^3y^k=(x+y)^(3+k) , show that (dy/dx)=y/x

If (x-y) e^((x)/(x-y)) =k ,then (dy)/(dx) =

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

Y = sum_ (k = 0) ^ (5) x ^ (k) a ^ (k-1)