Home
Class 12
MATHS
Let alpha be a root of the equation x^2-...

Let `alpha` be a root of the equation `x^2-x+1=0` , and the matrix `A=[(1,1,1),(1,alpha,alpha^2),(1,alpha^2,alpha^4)]` and matrix `B=[(1,-1,-1),(1,alpha,-alpha^2),(-1,-alpha^2,-alpha^4)]` then the value of |AB| is :

A

1

B

`-1`

C

`3`

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
D

The roots of the equation `x^2-x+1=0` are `-omega,-omega^2`
`alpha=-omega`
`AB=[(1,1,1),(1,alpha,alpha^2),(1,alpha^2,alpha^4)] [ (1,-1,-1),(1,alpha,-alpha^2),(-1,-alpha^2,-alpha^4)]`
`AB=[(1+1-1,-1+alpha-alpha^2,-1-alpha^2-alpha^4),(1+alpha-alpha^2,-1+alpha^2-alpha^4,-1-alpha^3-alpha^6),(1+alpha^2-alpha^4, -1+alpha^3-alpha^6,-1-alpha^4-alpha^8)]`
Substituting `alpha=-omega` and simplifying , we get
`AB=[(1,0,0),(2,2omega^2,-1),(-2omega, -3,0)]` , |AB|=3
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If alpha is a roots of equation x^(2)+x+1=0 and A=(1)/(sqrt3)[{:(,1,1,1),(,1,alpha,alpha^(2)),(,1,alpha^(2),alpha):}] then A^(31) equal to:

Let alpha be a root of the equation x ^(2) + x + 1 = 0 and the matrix A = ( 1 ) /(sqrt3) [{:( 1,,1,,1),( 1,, alpha ,, alpha ^(2)), ( 1 ,, alpha ^(2),, alpha ^(4)):}] then the matrix A ^( 31 ) is equal to :

If alpha and beta are the roots of the equation x^(2)-x-4=0 , find the value of (1)/(alpha)+(1)/(beta)-alpha beta :

If f(alpha)=[[1,alpha,alpha^2],[alpha,alpha^2,1],[alpha^2,1,alpha]] then find the value of f(3^(1/3))

If alpha and beta be the roots of the equation x^2-1=0 , then show that. alpha+beta=(1)/(alpha)+(1)/(beta)

If alpha and beta are the roots of the equation 1+x+x^(2)=0 , then the matrix product [{:(1, beta),(alpha,alpha):}][{:(alpha, beta),(1,beta):}] is equal to :

If alpha be a root of equation x^2+x+1=0 then find the vlaue of (alpha+ 1/alpha)+(alpha^2+1/alpha^2)^2+(alpha^3+1/alpha^3)^2+…+(alpha^6+1/alpha^6)^2

If alpha, beta, gamma are roots of equation x^(3)-x-1=0 then the value of sum(1+alpha)/(1-alpha) is :