Home
Class 12
MATHS
If |(z +4)/(2z -1)|=1, where z =x +iy. ...

If` |(z +4)/(2z -1)|=1,` where `z =x +iy.` Then the point (x,y) lies on a:

A

circle with center (4,0)

B

circle with center (-2,0)

C

circle with center (2,0)

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Put z=x+iy
`|(x+u+iy)/(2(x-iy)-1)|=1`
|x+4+iy|=(2x-1+2iy)
`rArr (x+4)^2 + y^2=(2x-1)^2 +(2y)^2`
`rArr x^2+y^2+16+8x=4x^2+1-4x+4y^2`
`rArr 3x^2+3y^2-12x-15=0`
`rArr x^2+y^2-4x-5=0`
Circle with center (2,0)
Promotional Banner

Similar Questions

Explore conceptually related problems

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

If (pi)/(8)+i beta=cot^(-1)(z) where z=x+iy then the locus of z is

If Re((z-1)/(z+1))=0 where z=x+iy is a complex number,then which one of the following is correct? (a) z=1+i(b)|z|=2 (c) z=1-i

Consider a complex number w=(z-1)/(2z+1) where z=x+iy, where x,y in R . If the complex number w is purely imaginary then locus of z is