Home
Class 12
MATHS
If f(6-x)=f(x), for all x, then 1/5 int2...

If f(6-x)=f(x), for all x, then `1/5 int_2^3 x[f(x)+f(x+1)]dx` is equal to :

A

`int_3^4 f(x+2)dx`

B

`int_3^4 f(x+1)dx`

C

`int_1^2 f(x+1)dx`

D

`int_1^3 f(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \[ I = \frac{1}{5} \int_2^3 x [f(x) + f(x+1)] \, dx. \] Given the property \( f(6-x) = f(x) \), we can utilize this symmetry in our calculations. ### Step-by-Step Solution: 1. **Substituting the Integral**: We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx. \] Here, \( a = 2 \) and \( b = 3 \), so \( a + b = 5 \). Thus, we can write: \[ I = \frac{1}{5} \int_2^3 x [f(x) + f(x+1)] \, dx = \frac{1}{5} \int_2^3 x [f(5-x) + f(6-x)] \, dx. \] 2. **Using the Property of \( f \)**: From the property \( f(6-x) = f(x) \), we can replace \( f(6-x) \) with \( f(x) \): \[ I = \frac{1}{5} \int_2^3 x [f(5-x) + f(x)] \, dx. \] 3. **Splitting the Integral**: Now, we can split the integral into two parts: \[ I = \frac{1}{5} \left( \int_2^3 x f(5-x) \, dx + \int_2^3 x f(x) \, dx \right). \] 4. **Changing Variables in the First Integral**: For the first integral, we can change the variable by letting \( u = 5 - x \), which gives \( du = -dx \). When \( x = 2 \), \( u = 3 \) and when \( x = 3 \), \( u = 2 \). Thus: \[ \int_2^3 x f(5-x) \, dx = \int_3^2 (5-u) f(u) (-du) = \int_2^3 (5-u) f(u) \, du. \] This simplifies to: \[ \int_2^3 (5-u) f(u) \, du = \int_2^3 5f(u) \, du - \int_2^3 u f(u) \, du. \] 5. **Combining the Integrals**: Now substituting back, we have: \[ I = \frac{1}{5} \left( \int_2^3 (5f(u) - u f(u)) \, du + \int_2^3 x f(x) \, dx \right). \] Notice that \( \int_2^3 u f(u) \, du \) cancels out: \[ I = \frac{1}{5} \left( 5 \int_2^3 f(x) \, dx \right) = \int_2^3 f(x) \, dx. \] 6. **Final Result**: Therefore, the final result is: \[ I = \int_2^3 f(x) \, dx. \]

To solve the given problem, we need to evaluate the integral \[ I = \frac{1}{5} \int_2^3 x [f(x) + f(x+1)] \, dx. \] Given the property \( f(6-x) = f(x) \), we can utilize this symmetry in our calculations. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is equal to

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to