Home
Class 12
MATHS
If Z1,Z2 and Z3 , Z4 are two pairs of co...

If `Z_1,Z_2` and `Z_3 , Z_4` are two pairs of conjugate complex numbers then `arg (Z_1/Z_4) + arg (Z_2/Z_3)` equals:

A

`pi/2`

B

`pi`

C

`(3pi)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given pairs of conjugate complex numbers and use properties of complex numbers, particularly the argument of a quotient. ### Step-by-Step Solution: 1. **Understanding Conjugate Complex Numbers**: - Let \( Z_1 = a + bi \) and \( Z_2 = a - bi \) (first pair of conjugates). - Let \( Z_3 = c + di \) and \( Z_4 = c - di \) (second pair of conjugates). 2. **Finding the Quotients**: - We need to calculate \( \frac{Z_1}{Z_4} \) and \( \frac{Z_2}{Z_3} \). - The first quotient is: \[ \frac{Z_1}{Z_4} = \frac{a + bi}{c - di} \] - The second quotient is: \[ \frac{Z_2}{Z_3} = \frac{a - bi}{c + di} \] 3. **Using the Argument Property**: - The property of arguments states that: \[ \arg\left(\frac{Z_1}{Z_4}\right) + \arg\left(\frac{Z_2}{Z_3}\right) = \arg\left(\frac{Z_1 \cdot Z_2}{Z_3 \cdot Z_4}\right) \] 4. **Calculating the Product**: - Now, calculate the product \( Z_1 \cdot Z_2 \) and \( Z_3 \cdot Z_4 \): \[ Z_1 \cdot Z_2 = (a + bi)(a - bi) = a^2 + b^2 \] \[ Z_3 \cdot Z_4 = (c + di)(c - di) = c^2 + d^2 \] 5. **Final Argument Calculation**: - Therefore, we have: \[ \arg\left(\frac{Z_1 \cdot Z_2}{Z_3 \cdot Z_4}\right) = \arg\left(\frac{a^2 + b^2}{c^2 + d^2}\right) \] - Since \( a^2 + b^2 \) and \( c^2 + d^2 \) are both real and positive, their argument is \( 0 \). 6. **Conclusion**: - Thus, we conclude that: \[ \arg\left(\frac{Z_1}{Z_4}\right) + \arg\left(\frac{Z_2}{Z_3}\right) = 0 \] ### Final Answer: \[ \arg\left(\frac{Z_1}{Z_4}\right) + \arg\left(\frac{Z_2}{Z_3}\right) = 0 \]

To solve the problem, we need to analyze the given pairs of conjugate complex numbers and use properties of complex numbers, particularly the argument of a quotient. ### Step-by-Step Solution: 1. **Understanding Conjugate Complex Numbers**: - Let \( Z_1 = a + bi \) and \( Z_2 = a - bi \) (first pair of conjugates). - Let \( Z_3 = c + di \) and \( Z_4 = c - di \) (second pair of conjugates). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,prove that arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=0

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,hen find the value of arg(z_(1)/z_(4))+arg(z_(2)/z_(3))*a

If z^(1),z^(2) and z^(3),z^(4) are two pairs of conjugate complex number, then find arg 2((z_(1))/(z_(4)))+ ((z_(2))/(z_(3))).