Home
Class 12
MATHS
Coefficient of x^25 in the expansion of ...

Coefficient of `x^25` in the expansion of the expression `sum_(r = 0)^50 ""^50C_r (2x - 3)^r (2-x)^(n-r) ` is :

A

`""^50C_25`

B

`-""^50C_24`

C

`-""^50C_25`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`sum_(r =0)^50 ""^50C_r (2x - 3)^r (2-x)^(n-r)`
`= ""^50C_0 (2x - 3)^0 . (2-x)^n + ""^50C_1 (2x - 3)^1 (2-x)^(n-1) + ""^50C_2(2x - 3)^2 (2-x)^(n-2) + ……""^50C_50(2x - 3)^n`
` = (x - 1)^50 = ""^50C_0 x^50 - ""^50C_1 x^49 + ……. `
Coefficient of `x^25` is `-""^50C_25` .
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^(25) in expansion of expression sum_(r=0)^(50)C_(r)(2x-3)^(r)(2-x)^(50-r)

The coefficient of x^(r) in the expansion of (1-x)^(-2) is

Coefficient of x^(48) in sum_(r=0)^(50)""^(50)C_(r).(x-2)^(x).3^(50-r) is

Sum of all coefficient of different power of x in the expansion sum_(r=0)^(10)('^10)C_(r)(x-3)^(r)4^(10-r) will be

Find the sum of the series sum_(r=0)^(50)(""^(100-r)C_(25))/(100-r)

The coefficient of x^(27) in the expansion sum_(m=0)^(50).^(50)C_(m)(x+3)^(50-m)(-2)^(m) is:

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If ""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q = 1 , then sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) =

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is