Home
Class 12
MATHS
If a lt b lt c in R and f (a + b +c - x)...

If `a lt b lt c in R` and `f (a + b +c - x) = f (x)` for all, x then `int_(a)^(b) (x(f(x) + f(x + c))dx)/(a + b)` is:

A

`overset(b-c)underset(a-c)int f(x +c)`

B

`overset(b+c)underset(a+c)int f(x +c)`

C

`underset(a)overset(b)int f(x+c)`

D

`underset(a+c)overset(b+c) intf(x)`

Text Solution

Verified by Experts

The correct Answer is:
A

`I = int_(a)^(b) x(f(x) = f(x+c))dx`
`I = int_(a)^(b) x f(x) + int_(a)^(b)(a+b - x) f(a+b+C-x)`
`I = int_(a)^(b) x f(x) + int_(a)^(b) (a+b - x)f(x)`
`I = int_(a)^(b) x f(x) - int_(a)^(b) f(x) x+ int_(a)^(b)(a+b)f(x)`
`I = int_(a)^(b) (a+b) f(x) = (a+b) int_(a)^(b) f(x)`
`I = (a+b) underset(a-c)overset(b-c) int f(x+c)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=

int_(a + c)^(b+c) f(x)dx=

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then