Home
Class 12
MATHS
If angle bisector of vec(a) = 2hat(i) ...

If angle bisector of `vec(a) = 2hat(i) + 3hat(j) + 4hat(k)` and `vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) ` is `vec(c) = alpha hat(i) + 2hat(j) + beta hat(k)` then :

A

`vec(c). hat(k) + 7= 0`

B

`vec(c) .hat(k) - 14 = 0`

C

`vec(c) .hat(k) + 14 = 0 `

D

`vec(c) .hat(k) - 7 =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle bisector of the vectors \( \vec{a} \) and \( \vec{b} \), and then compare it with the given vector \( \vec{c} \). ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 2: Calculate the magnitudes of \( \vec{a} \) and \( \vec{b} \) The magnitude of \( \vec{a} \): \[ |\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29} \] The magnitude of \( \vec{b} \): \[ |\vec{b}| = \sqrt{4^2 + (-2)^2 + 3^2} = \sqrt{16 + 4 + 9} = \sqrt{29} \] ### Step 3: Find the unit vectors of \( \vec{a} \) and \( \vec{b} \) The unit vector of \( \vec{a} \): \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{2\hat{i} + 3\hat{j} + 4\hat{k}}{\sqrt{29}} \] The unit vector of \( \vec{b} \): \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{4\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{29}} \] ### Step 4: Write the angle bisector vector \( \vec{c} \) The angle bisector \( \vec{c} \) can be expressed as: \[ \vec{c} = \lambda (\hat{a} + \hat{b}) \] Substituting the unit vectors: \[ \vec{c} = \lambda \left( \frac{2\hat{i} + 3\hat{j} + 4\hat{k}}{\sqrt{29}} + \frac{4\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{29}} \right) \] \[ = \lambda \frac{(2 + 4)\hat{i} + (3 - 2)\hat{j} + (4 + 3)\hat{k}}{\sqrt{29}} \] \[ = \lambda \frac{6\hat{i} + 1\hat{j} + 7\hat{k}}{\sqrt{29}} \] ### Step 5: Compare with the given vector \( \vec{c} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k} \) From the equation: \[ \vec{c} = \lambda \frac{6\hat{i} + 1\hat{j} + 7\hat{k}}{\sqrt{29}} \] We can equate components: 1. \( \alpha = \lambda \frac{6}{\sqrt{29}} \) 2. \( 2 = \lambda \frac{1}{\sqrt{29}} \) 3. \( \beta = \lambda \frac{7}{\sqrt{29}} \) ### Step 6: Solve for \( \lambda \) From the second equation: \[ \lambda = 2\sqrt{29} \] ### Step 7: Substitute \( \lambda \) back to find \( \alpha \) and \( \beta \) Substituting \( \lambda \) into the equations for \( \alpha \) and \( \beta \): 1. \( \alpha = 2\sqrt{29} \cdot \frac{6}{\sqrt{29}} = 12 \) 2. \( \beta = 2\sqrt{29} \cdot \frac{7}{\sqrt{29}} = 14 \) ### Conclusion Thus, we have: \[ \alpha = 12, \quad \beta = 14 \] ### Final Step: Verify with the dot product condition We need to check if \( \vec{c} \cdot \hat{k} - 14 = 0 \): \[ \vec{c} \cdot \hat{k} = \beta = 14 \] Thus, \( \vec{c} \cdot \hat{k} - 14 = 0 \).

To solve the problem, we need to find the angle bisector of the vectors \( \vec{a} \) and \( \vec{b} \), and then compare it with the given vector \( \vec{c} \). ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).