Home
Class 12
MATHS
lim(x to 2) (2^(x) + 2^(2 -x) - 5)/((1)/...

`lim_(x to 2) (2^(x) + 2^(2 -x) - 5)/((1)/(sqrt(2^(x))) + lambda (2)^(1 - x)) (lambda in R)` has non zero value, which can be

Text Solution

Verified by Experts

The correct Answer is:
12

For `lambda = -1 ` we get : from
(For `lambda ne -1`, limiting value is 0)
Applying LH Rule .
`therefore " " underset(xto2)(lim) (2^(x) .log 2-2^(2-x) .log^(2))/(2^(-x//2).log2(-(1)/(2)) + 2^(1-x) log2) lambda=-1`
`" " = underset(x to 2)(lim) (2^(2)x - 2^(2-x))/(-(2^(-(x)/(2)))/(2) + 2^(1-x)) = (4-1)/(-(1)/(4) +(1)/(2) ) = (3)/((1)/(4)) = (12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

The equation (x^(2)-6x+8)+lambda (x^(2)-4x+3)=0, lambda in R has

int_ (lambda =) (dx) / (sqrt (1-tan ^ (2) x)) = (1) / (lambda) sin ^ (- 1) (lambda sin x) + C, then

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

Of f(x)=(2)/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^(2)+x+1)(lambda^(2)-5 lambda+3)x+10 is a decreasing function for all x in R, find the permissible values of lambda.

If int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx=mu e^(x)((1+x)/(1-x))^(lambda)+C , then 2(lambda+mu) is equal to ..... .

The equation x^(2)-6x+8+lambda(x^(2)-4x+3)=0,AA lambda in R-{-1} has

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))