Home
Class 12
MATHS
The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//2...

The vlaue of `9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo` is :

A

9

B

3

C

1

D

None of theses

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite product: \[ 9^{\frac{1}{3}} \times 9^{\frac{1}{9}} \times 9^{\frac{1}{27}} \times \ldots \] ### Step 1: Combine the Exponents Using the property of exponents that states \( a^m \times a^n = a^{m+n} \), we can combine the exponents: \[ 9^{\left(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\right)} \] ### Step 2: Identify the Series The series in the exponent is: \[ \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots \] This is a geometric series where the first term \( a = \frac{1}{3} \) and the common ratio \( r = \frac{1}{3} \). ### Step 3: Sum the Infinite Geometric Series The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values of \( a \) and \( r \): \[ S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] ### Step 4: Substitute Back into the Exponent Now we substitute the sum back into the exponent: \[ 9^{\frac{1}{2}} \] ### Step 5: Simplify the Expression We know that \( 9^{\frac{1}{2}} \) is the square root of 9: \[ 9^{\frac{1}{2}} = \sqrt{9} = 3 \] ### Final Answer Thus, the value of the infinite product is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the infinite product: \[ 9^{\frac{1}{3}} \times 9^{\frac{1}{9}} \times 9^{\frac{1}{27}} \times \ldots \] ### Step 1: Combine the Exponents Using the property of exponents that states \( a^m \times a^n = a^{m+n} \), we can combine the exponents: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 9^(1//3)xx9^(1//9)xx9^(1//27)xx...oo=3 .

The value of 3xx 9^(-3//2) xx 9^(1//2) is

Find the value of 9^((1)/(3)),9^((1)/(9)).9^((1)/(27))...up to oo

81^(1/4)xx9^(3//2)xx27^(- 4/3)=