Home
Class 12
MATHS
If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)...

If `f'(x)=(1)/((1+x^(2))^(3//2))` and `f(0)=0,` then `f(1)` is equal to :

A

`sqrt2`

B

`-1/(sqrt(2))`

C

`1/(sqrt(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the function \( f(x) \) given its derivative \( f'(x) \) and the initial condition \( f(0) = 0 \). ### Step 1: Integrate the derivative Given: \[ f'(x) = \frac{1}{(1 + x^2)^{3/2}} \] We need to find \( f(x) \) by integrating \( f'(x) \): \[ f(x) = \int f'(x) \, dx = \int \frac{1}{(1 + x^2)^{3/2}} \, dx \] ### Step 2: Use a trigonometric substitution To solve the integral, we can use the substitution \( x = \tan(\theta) \). Then, \( dx = \sec^2(\theta) \, d\theta \) and \( 1 + x^2 = \sec^2(\theta) \). Substituting these into the integral gives: \[ f(x) = \int \frac{\sec^2(\theta)}{(\sec^2(\theta))^{3/2}} \, d\theta = \int \frac{\sec^2(\theta)}{\sec^3(\theta)} \, d\theta = \int \cos(\theta) \, d\theta \] ### Step 3: Integrate The integral of \( \cos(\theta) \) is: \[ f(x) = \sin(\theta) + C \] ### Step 4: Substitute back to original variable Since \( \theta = \tan^{-1}(x) \), we have: \[ f(x) = \sin(\tan^{-1}(x)) + C \] Using the right triangle definition, where \( \tan(\theta) = \frac{x}{1} \), we can find: - Opposite side = \( x \) - Adjacent side = \( 1 \) - Hypotenuse = \( \sqrt{1 + x^2} \) Thus, \[ \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1 + x^2}} \] So, \[ f(x) = \frac{x}{\sqrt{1 + x^2}} + C \] ### Step 5: Use the initial condition to find \( C \) We know \( f(0) = 0 \): \[ f(0) = \frac{0}{\sqrt{1 + 0^2}} + C = 0 \implies C = 0 \] Thus, \[ f(x) = \frac{x}{\sqrt{1 + x^2}} \] ### Step 6: Find \( f(1) \) Now we can find \( f(1) \): \[ f(1) = \frac{1}{\sqrt{1 + 1^2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Final Answer \[ f(1) = \frac{\sqrt{2}}{2} \]

To solve the problem step by step, we need to find the function \( f(x) \) given its derivative \( f'(x) \) and the initial condition \( f(0) = 0 \). ### Step 1: Integrate the derivative Given: \[ f'(x) = \frac{1}{(1 + x^2)^{3/2}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If f(x+1)=2x+7 then f(0) is equal to

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

A polynomial function f(x) satisfies f(x)f((1)/(x))-2f(x)+2f((1)/(x));x!=0 and f(2)=18 ,then f(3) is equal to

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals