Home
Class 12
MATHS
If x(1), x(2),"…......." x(18) are obser...

If `x_(1), x_(2),"…......." x_(18)` are observation such that `sum_(j=1)^(18)(x_(j) -8) = 9` and `sum_(j=1)^(18)(x_(j) -8)^(2) = 45`, then the standard deviation of these observations is

A

`sqrt((81)/(34))`

B

5

C

`sqrt5`

D

`(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

Standard devivation
`=sqrt((sum_(f=1)^(18)(x_(j)-8)^(2))/(n)-((sum_(j=1)^(18)(x_(j)-8))/(n))^(2))=sqrt((45)/(18)-((9)/(18))^(2))=sqrt((45)/(18)-(1)/(4))=sqrt((81)/(36))=(9)/(6)=(3)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

Let x_(1),x_(2),...,x, are n observations such that sum_(i=1)^(t)x_(1)=10 and sum_(i=1)^(n)x_(i)^(2)=260 and standard deviation is 5 then n is equal to

Let X_1,X_2,….,X_(18) be eighteen observations such that sum_(i=1)^(18)(X_i-alpha)=36 and sum_(i=1)^(18)(X_i-beta)^2=90 , where alpha and beta are distinct real number. If the standard deviation of these observations is 1 then the value of |alpha-beta| is "_____"