Home
Class 12
MATHS
Let veca,vecb,vecc be three vectors such...

Let `veca,vecb,vecc` be three vectors such that `veca ne vec0` and `veca xx vecb=2veca xx vecc, |veca|=|vecc|=1,|vecb|=4 and |vecbxxvecc|=sqrt(15)`. If `vecb-2vecc=lambdaveca`, then `|lambda|` is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down: ### Given: 1. \(\vec{a}, \vec{b}, \vec{c}\) are vectors such that \(\vec{a} \neq \vec{0}\). 2. \(\vec{a} \times \vec{b} = 2 \vec{a} \times \vec{c}\) 3. \(|\vec{a}| = |\vec{c}| = 1\) 4. \(|\vec{b}| = 4\) 5. \(|\vec{b} \times \vec{c}| = \sqrt{15}\) 6. \(\vec{b} - 2\vec{c} = \lambda \vec{a}\) ### Objective: Find \(|\lambda|\). ### Step 1: Analyze the cross product condition From the equation \(\vec{a} \times \vec{b} = 2 \vec{a} \times \vec{c}\), we can take the magnitude of both sides: \[ |\vec{a} \times \vec{b}| = 2 |\vec{a} \times \vec{c}| \] Using the property of the cross product, we know: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta_{ab} \] \[ |\vec{a} \times \vec{c}| = |\vec{a}| |\vec{c}| \sin \theta_{ac} \] where \(\theta_{ab}\) is the angle between \(\vec{a}\) and \(\vec{b}\), and \(\theta_{ac}\) is the angle between \(\vec{a}\) and \(\vec{c}\). Since \(|\vec{a}| = |\vec{c}| = 1\): \[ |\vec{a} \times \vec{b}| = 4 \sin \theta_{ab} \] \[ |\vec{a} \times \vec{c}| = \sin \theta_{ac} \] Thus, we have: \[ 4 \sin \theta_{ab} = 2 \sin \theta_{ac} \] This simplifies to: \[ 2 \sin \theta_{ab} = \sin \theta_{ac} \] ### Step 2: Use the given magnitude of the cross product We know: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin \theta_{bc} \] Substituting the known magnitudes: \[ \sqrt{15} = 4 \cdot 1 \cdot \sin \theta_{bc} \] This gives: \[ \sin \theta_{bc} = \frac{\sqrt{15}}{4} \] ### Step 3: Find \(\cos \theta_{bc}\) Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 \theta_{bc} = \left(\frac{\sqrt{15}}{4}\right)^2 = \frac{15}{16} \] Thus, \[ \cos^2 \theta_{bc} = 1 - \frac{15}{16} = \frac{1}{16} \] So, \[ \cos \theta_{bc} = \frac{1}{4} \] ### Step 4: Substitute into the equation for \(\lambda\) From the equation \(\vec{b} - 2\vec{c} = \lambda \vec{a}\), we can square both sides: \[ |\vec{b} - 2\vec{c}|^2 = |\lambda \vec{a}|^2 \] This gives: \[ |\vec{b}|^2 - 4 \vec{b} \cdot \vec{c} + 4 |\vec{c}|^2 = \lambda^2 \] Substituting the known values: \[ 16 - 4 \vec{b} \cdot \vec{c} + 4 = \lambda^2 \] \[ 20 - 4 \vec{b} \cdot \vec{c} = \lambda^2 \] ### Step 5: Find \(\vec{b} \cdot \vec{c}\) Using the dot product: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \theta_{bc} = 4 \cdot 1 \cdot \frac{1}{4} = 1 \] Substituting back: \[ 20 - 4 \cdot 1 = \lambda^2 \] \[ 20 - 4 = \lambda^2 \] \[ \lambda^2 = 16 \] Thus, \[ |\lambda| = 4 \] ### Final Answer: \(|\lambda| = 4\)

To solve the problem step by step, let's break it down: ### Given: 1. \(\vec{a}, \vec{b}, \vec{c}\) are vectors such that \(\vec{a} \neq \vec{0}\). 2. \(\vec{a} \times \vec{b} = 2 \vec{a} \times \vec{c}\) 3. \(|\vec{a}| = |\vec{c}| = 1\) 4. \(|\vec{b}| = 4\) 5. \(|\vec{b} \times \vec{c}| = \sqrt{15}\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three vectors such that a!=0 and veca xx vecb = 2veca xx vecc, |veca| = |vecc| = 1, |vecb| = 4 and |vecb xx vecc| = sqrt15. If vecb-2 vecc = lambda veca, then lambda is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vecc|=1,|vecb|=4and |vecbxxvecc|=sqrt15 . If vecb-2vecc=lambdaveca then find the value of lambda .

Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vecc|=1,|vecb|=4and |vecbxxvecc|=sqrt15 . If vecb-2vecc=lambdaveca then find the value of lambda .

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to: