Home
Class 9
MATHS
Find the volume of the right circular co...

Find the volume of the right circular cone with (i) radius 6 cm, height 7 cm (ii) radius 3.5 cm, height 12 cm

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the right circular cone for the given dimensions, we will use the formula for the volume of a cone: \[ \text{Volume of cone} = \frac{1}{3} \pi r^2 h \] where: - \( r \) is the radius of the cone, - \( h \) is the height of the cone, - \( \pi \) is approximately \( \frac{22}{7} \). ### Part (i): Radius = 6 cm, Height = 7 cm 1. **Identify the values**: - Radius \( r = 6 \) cm - Height \( h = 7 \) cm 2. **Substitute the values into the formula**: \[ \text{Volume} = \frac{1}{3} \times \frac{22}{7} \times (6^2) \times 7 \] 3. **Calculate \( r^2 \)**: \[ 6^2 = 36 \] 4. **Substitute \( r^2 \) back into the formula**: \[ \text{Volume} = \frac{1}{3} \times \frac{22}{7} \times 36 \times 7 \] 5. **Simplify the equation**: - The \( 7 \) in the numerator and denominator cancels out: \[ \text{Volume} = \frac{1}{3} \times 22 \times 36 \] 6. **Calculate \( 22 \times 36 \)**: \[ 22 \times 36 = 792 \] 7. **Now divide by 3**: \[ \text{Volume} = \frac{792}{3} = 264 \text{ cm}^3 \] ### Part (ii): Radius = 3.5 cm, Height = 12 cm 1. **Identify the values**: - Radius \( r = 3.5 \) cm - Height \( h = 12 \) cm 2. **Substitute the values into the formula**: \[ \text{Volume} = \frac{1}{3} \times \frac{22}{7} \times (3.5^2) \times 12 \] 3. **Calculate \( r^2 \)**: \[ 3.5^2 = 12.25 \] 4. **Substitute \( r^2 \) back into the formula**: \[ \text{Volume} = \frac{1}{3} \times \frac{22}{7} \times 12.25 \times 12 \] 5. **Simplify the equation**: - First, calculate \( 12.25 \times 12 \): \[ 12.25 \times 12 = 147 \] - Now substitute back: \[ \text{Volume} = \frac{1}{3} \times \frac{22}{7} \times 147 \] 6. **Calculate \( \frac{147}{3} \)**: \[ \frac{147}{3} = 49 \] 7. **Now multiply by \( \frac{22}{7} \)**: \[ \text{Volume} = \frac{22 \times 49}{7} \] 8. **Calculate \( 22 \times 49 \)**: \[ 22 \times 49 = 1078 \] 9. **Now divide by 7**: \[ \text{Volume} = \frac{1078}{7} = 154 \text{ cm}^3 \] ### Final Answers: - Volume of the first cone: \( 264 \text{ cm}^3 \) - Volume of the second cone: \( 154 \text{ cm}^3 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SURFACE AREAS AND VOLUMES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXERCISE 13.8|10 Videos
  • SURFACE AREAS AND VOLUMES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXERCISE 13.9 (OPTIONAL)|3 Videos
  • SURFACE AREAS AND VOLUMES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXERCISE 13.6|8 Videos
  • PROBABILITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions (MCQs)|10 Videos
  • TRIANGLES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SUMS TO ENRICH REMEMBER|9 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the right circular cone with (i) radius 6cm, height 7cm( ii) radius 3.5cm, height 12cm

Find the volume of a right circular cone with: (i) radius 6cm ,height 7cm. (ii) radius 3.5cm , height 12cm (ii) height 21cm and slant height 28cm.

Knowledge Check

  • The volume of a right circular cone of height 12 cm and base radius 6 cm, is

    A
    `(12pi) cm^(3)`
    B
    `(36pi) cm^(3)`
    C
    `(72 pi) cm^(3)`
    D
    `(144 pi)cm^(3)`
  • Find the volume (in cm^(3) ) of a right circular cone of diameter 7 cm and height 7 cm.

    A
    69.06
    B
    16.43
    C
    11.15
    D
    89.83
  • Find the volume (in cm^(3) ) of a right circular cone of diameter 7 cm and height 7 cm.

    A
    `69.06`
    B
    `16.43`
    C
    `11.15`
    D
    `89.83`
  • Similar Questions

    Explore conceptually related problems

    Find the total surface area of a right circular cone with radius 6cm and height 8cm.

    The volume of a right circular cone of height 3 cm and slant height 5 cm is

    Find the volume of a right circular cylinder,if the radius (r) of its base and height (h) are 7cm and 15cm respectively.

    The volume of a right circular cone is 100 pi cm^3 and its height is 12 cm. Find its slant height.

    The volume (in cu.cm.) of a right circular cylinder with radius 2 cm and height 2 cm is: (take pi=(22)/(7) )