Home
Class 12
MATHS
The sum to n terms of the series (1)/(sq...

The sum to n terms of the series `(1)/(sqrt(7)+sqrt(10))+(1)/(sqrt(10)+sqrt(13))+(1)/(sqrt(13)+sqrt(16))+...`is

A

`(1)/(3) (sqrt(7+3n)-sqrt(7))`

B

`(sqrt(4+3n)-2)/(3)`

C

`(1)/(3)(sqrt(10+3n)-sqrt(10))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series given by \[ S_n = \frac{1}{\sqrt{7} + \sqrt{10}} + \frac{1}{\sqrt{10} + \sqrt{13}} + \frac{1}{\sqrt{13} + \sqrt{16}} + \ldots \] we start by identifying the general term of the series. ### Step 1: Identify the General Term The general term \( T_r \) of the series can be expressed as: \[ T_r = \frac{1}{\sqrt{3r + 4} + \sqrt{3r + 7}} \] where \( r \) starts from 1 and goes up to \( n \). ### Step 2: Rationalize the Denominator To simplify \( T_r \), we will rationalize the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ T_r = \frac{\sqrt{3r + 7} - \sqrt{3r + 4}}{(\sqrt{3r + 4} + \sqrt{3r + 7})(\sqrt{3r + 7} - \sqrt{3r + 4})} \] The denominator simplifies to: \[ (\sqrt{3r + 7})^2 - (\sqrt{3r + 4})^2 = (3r + 7) - (3r + 4) = 3 \] Thus, we have: \[ T_r = \frac{\sqrt{3r + 7} - \sqrt{3r + 4}}{3} \] ### Step 3: Write the Sum of the Series Now we can write the sum \( S_n \): \[ S_n = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} \frac{\sqrt{3r + 7} - \sqrt{3r + 4}}{3} \] ### Step 4: Factor Out the Constant We can factor out the constant \( \frac{1}{3} \): \[ S_n = \frac{1}{3} \sum_{r=1}^{n} (\sqrt{3r + 7} - \sqrt{3r + 4}) \] ### Step 5: Telescoping Series Notice that this is a telescoping series. When we expand the sum, we will see that most terms cancel out: \[ S_n = \frac{1}{3} \left( (\sqrt{3 \cdot 1 + 7} - \sqrt{3 \cdot 1 + 4}) + (\sqrt{3 \cdot 2 + 7} - \sqrt{3 \cdot 2 + 4}) + \ldots + (\sqrt{3n + 7} - \sqrt{3n + 4}) \right) \] The first term of the first square root and the last term of the last square root will remain. Thus, we have: \[ S_n = \frac{1}{3} \left( \sqrt{3n + 7} - \sqrt{4} \right) \] ### Step 6: Final Expression Since \( \sqrt{4} = 2 \), we can write: \[ S_n = \frac{1}{3} (\sqrt{3n + 7} - 2) \] ### Summary The sum to \( n \) terms of the series is: \[ S_n = \frac{1}{3} (\sqrt{3n + 7} - 2) \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL -2 (SINGLE CORRECT ANSWER TYPE QUESTIONS)|12 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL (Numerical Answer Type Questions)|21 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Papers|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos

Similar Questions

Explore conceptually related problems

The sum of n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+... is

The sum n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+(1)/(sqrt(5)+sqrt(7))+... is sqrt(2n+1) (b) (1)/(2)sqrt(2n+1)(c)(1)/(2)sqrt(2n+1)-1(d)(1)/(2){sqrt(2n+1)-1}

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ up to 15 terms is

The sum of 10 terms of the series sqrt(2)+sqrt(6)+sqrt(18)+... is

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The sum of the numerical series (1)/(sqrt(3)+sqrt(7))+(1)/(sqrt(7)+sqrt(11))+(1)/(sqrt(11)+sqrt(15))+ upto n terms is

What is the sum of n terms of the series sqrt(2)+sqrt(8)+sqrt(18)+sqrt(32)+...

MCGROW HILL PUBLICATION-PROGRESSIONS-SOLVED EXAMPLES LEVEL -1 (SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. The sum to n terms of the series 1/2+3/4+7/8+15/16+..... is given by

    Text Solution

    |

  2. let 0ltphiltpi/2, x=sum(n=0)^oocos^(2n)phi, y=sum(n=0)^oosin^(2n)phi a...

    Text Solution

    |

  3. The sum to n terms of the series (1)/(sqrt(7)+sqrt(10))+(1)/(sqrt(10)+...

    Text Solution

    |

  4. If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(2)+9n+13), then Sigma(r=1)^(n)...

    Text Solution

    |

  5. The interior angles of a convex polygon are in A.P. If the smallest an...

    Text Solution

    |

  6. If the terms of the A.P. sqrt(a-x),sqrt(x),sqrt(a+x) are all in intege...

    Text Solution

    |

  7. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  8. If the sides of a right-angled triangle are in A.P., then the sines of...

    Text Solution

    |

  9. If exp (sin^2x+sin^4x +sin^6 x........upto oo)loge 2 satisfies the equ...

    Text Solution

    |

  10. Let fx) be a polynomial function of second degree. If f(1)= f(-1) and ...

    Text Solution

    |

  11. If exp { (tan^(2) x -tan^(4) x + tan^(8) x - tan^(6) x …. ) log(e) 16 ...

    Text Solution

    |

  12. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  13. For eR let [x] denote the greatest integer le x. Largest natural numbe...

    Text Solution

    |

  14. If the ratio of sum to n terms of two A.P's is (5n+7): (3n+2), then th...

    Text Solution

    |

  15. If H1. H2...., Hn are n harmonic means between a and b(!=a), then the ...

    Text Solution

    |

  16. If three positive real numbers ,b ,c are in A.P. sich that a b c=4 , t...

    Text Solution

    |

  17. For 0 lt x lt pi the values of x which satisfy then relation 9^(1+|cos...

    Text Solution

    |

  18. The sum upto (2n+1) terms of the series a^(2)-(a+d)^(2)+(a+2d)^(2)-(a+...

    Text Solution

    |

  19. Value of (0.36)^(log(0.25) (1/3+1/3^2+1/3^3+....oo))=

    Text Solution

    |

  20. The sum of the series 1+2(1 +1/n)+ 3(1+1/n)^2+.... oo is given by

    Text Solution

    |