Home
Class 12
MATHS
Let I(n) = overset(pi//4)underset(0)int ...

Let `I_(n) = overset(pi//4)underset(0)int tan^(n) x dx." Then "I_(2)+I_(4),I_(3)+I_(5),I_(4)+I_(6),I_(5)+I_(7),….` are in

A

A.P

B

G.P

C

H.P

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and find the relationships between the sums \( I_2 + I_4, I_3 + I_5, I_4 + I_6, I_5 + I_7, \ldots \). ### Step-by-Step Solution: 1. **Define the Integral**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] 2. **Calculate \( I_n + I_{n+2} \)**: We can express \( I_n + I_{n+2} \) as follows: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \, dx + \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, dx \] This can be combined into a single integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) \, dx \] 3. **Use the Identity**: We know that \( 1 + \tan^2 x = \sec^2 x \). Thus, we can rewrite the integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx \] 4. **Substitution**: Let \( u = \tan x \), then \( du = \sec^2 x \, dx \). The limits change as follows: - When \( x = 0 \), \( u = 0 \) - When \( x = \frac{\pi}{4} \), \( u = 1 \) Therefore, we have: \[ I_n + I_{n+2} = \int_0^1 u^n \, du = \left[ \frac{u^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1} \] 5. **Result for \( I_n + I_{n+2} \)**: Thus, we find: \[ I_n + I_{n+2} = \frac{1}{n+1} \] 6. **Calculate Specific Sums**: Now, we can calculate: - \( I_2 + I_4 = \frac{1}{2 + 1} = \frac{1}{3} \) - \( I_3 + I_5 = \frac{1}{3 + 1} = \frac{1}{4} \) - \( I_4 + I_6 = \frac{1}{4 + 1} = \frac{1}{5} \) - \( I_5 + I_7 = \frac{1}{5 + 1} = \frac{1}{6} \) 7. **Identify the Series**: The values we calculated are: - \( I_2 + I_4 = \frac{1}{3} \) - \( I_3 + I_5 = \frac{1}{4} \) - \( I_4 + I_6 = \frac{1}{5} \) - \( I_5 + I_7 = \frac{1}{6} \) The reciprocals of these sums are: - \( 3, 4, 5, 6 \) Since \( 3, 4, 5, 6 \) are in Arithmetic Progression (AP), we conclude that: \[ I_2 + I_4, I_3 + I_5, I_4 + I_6, I_5 + I_7 \text{ are in Harmonic Progression (HP)}. \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL (Numerical Answer Type Questions)|21 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES CONCEPT-BASED (Single Correct Answer Type Questions)|15 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL -1 (SINGLE CORRECT ANSWER TYPE QUESTIONS)|83 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Papers|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

Let I= underset(pi//4)overset(pi//3)int (sinx)/x dx , then I belongs to

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, show that (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),(1)/(I_(5)+I_(7)),... form an A.P. Find the common difference of this progression.

If I_(n)=int x^(n)e^(x)dx, then I_(5)+5I_(4)=

If rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3) are in

If I_(n) = int _(0)^(pi//4) tan^(n) theta " " d theta, "then "I_(8)+I_(6)=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=