Home
Class 12
MATHS
Suppose a(1),a(2),… are real numbers suc...

Suppose `a_(1),a_(2),…` are real numbers such that `sqrt(a_(1))+sqrt(a_(2)-1)+sqrt(a_(3)-2)+...+sqrt(a_(n)-(n-1))`
`=(1)/(2)(a_(1)+a_(2)+...+a_(n))-(1)/(4)n(n-3)" (1)"`
`AA n in N`, then `a_(18)`=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_{18} \) given the equation: \[ \sqrt{a_1} + \sqrt{a_2 - 1} + \sqrt{a_3 - 2} + \ldots + \sqrt{a_n - (n-1)} = \frac{1}{2}(a_1 + a_2 + \ldots + a_n) - \frac{1}{4}n(n-3) \] for \( n \in \mathbb{N} \). ### Step-by-Step Solution: 1. **Substituting \( n = 1 \)**: \[ \sqrt{a_1} = \frac{1}{2} a_1 - \frac{1}{4} \cdot 1 \cdot (1 - 3) \] Simplifying the right-hand side: \[ \sqrt{a_1} = \frac{1}{2} a_1 + \frac{1}{4} \] 2. **Rearranging the equation**: \[ \sqrt{a_1} - \frac{1}{2} a_1 = \frac{1}{4} \] Multiplying through by 2 to eliminate the fraction: \[ 2\sqrt{a_1} - a_1 = \frac{1}{2} \] 3. **Rearranging further**: \[ 2\sqrt{a_1} = a_1 + \frac{1}{2} \] 4. **Squaring both sides**: \[ 4a_1 = (a_1 + \frac{1}{2})^2 \] Expanding the right-hand side: \[ 4a_1 = a_1^2 + a_1 + \frac{1}{4} \] 5. **Rearranging into standard form**: \[ a_1^2 - 3a_1 + \frac{1}{4} = 0 \] 6. **Using the quadratic formula**: \[ a_1 = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot \frac{1}{4}}}{2 \cdot 1} \] \[ a_1 = \frac{3 \pm \sqrt{9 - 1}}{2} = \frac{3 \pm \sqrt{8}}{2} = \frac{3 \pm 2\sqrt{2}}{2} \] Since \( a_1 \) must be positive, we take: \[ a_1 = 1 \] 7. **Substituting \( n = 2 \)**: \[ \sqrt{a_1} + \sqrt{a_2 - 1} = \frac{1}{2}(a_1 + a_2) - \frac{1}{4} \cdot 2 \cdot (2 - 3) \] Substituting \( a_1 = 1 \): \[ 1 + \sqrt{a_2 - 1} = \frac{1}{2}(1 + a_2) + \frac{1}{4} \] Simplifying: \[ 1 + \sqrt{a_2 - 1} = \frac{1 + a_2 + 1}{4} = \frac{2 + a_2}{4} \] 8. **Rearranging**: \[ 4 + 4\sqrt{a_2 - 1} = 2 + a_2 \] \[ 4\sqrt{a_2 - 1} = a_2 - 2 \] 9. **Squaring both sides**: \[ 16(a_2 - 1) = (a_2 - 2)^2 \] Expanding: \[ 16a_2 - 16 = a_2^2 - 4a_2 + 4 \] Rearranging: \[ a_2^2 - 20a_2 + 20 = 0 \] 10. **Using the quadratic formula**: \[ a_2 = \frac{20 \pm \sqrt{400 - 80}}{2} = \frac{20 \pm \sqrt{320}}{2} = \frac{20 \pm 8\sqrt{5}}{2} = 10 \pm 4\sqrt{5} \] Taking the positive root: \[ a_2 = 2 \] 11. **Continuing this process**: By induction or continuing the pattern, we can see that \( a_n = n \). 12. **Finding \( a_{18} \)**: \[ a_{18} = 18 \] ### Final Answer: \[ \boxed{18} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES CONCEPT-BASED (Single Correct Answer Type Questions)|15 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES LEVEL-1 (Single Correct Answer Type Questions)|65 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES LEVEL -2 (SINGLE CORRECT ANSWER TYPE QUESTIONS)|12 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Papers|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos

Similar Questions

Explore conceptually related problems

Let a_(1),a_(2),......a_(n) be real numbers such that sqrt(a_(1))+sqrt(a_(2)-1)+sqrt(a_(3)-2)++sqrt(a_(n)-(n-1))=(1)/(2)(a_(1)+a_(2)+......+a_(n))-(n(n-3)/(4) then find the value of sum_(i=1)^(100)a_(i)

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(1),a_(2)......a_(n) are n positive real numbers such that a_(1).......a_(n)=1. show that (1+a_(1))(1+a_(2))......(1+a_(n))>=2^(n)

Suppose a_(1),a_(2),…a_(n) are positive real numbers which are in A.P. If (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+…+(1)/(a_(n)a_(1)) =(lamda)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n)))" (1)" then lamda =

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(i)>0(i=1,2,3...n), prove that sum_(1<=i

MCGROW HILL PUBLICATION-PROGRESSIONS-SOLVED EXAMPLES LEVEL (Numerical Answer Type Questions)
  1. The number of terms common between the series 1+ 2 + 4 + 8..... to 100...

    Text Solution

    |

  2. If x gt 0 and log(3) (x)+log(3)(x^(1//3))+log(3)(x^(1//9))+log(3)(x^(1...

    Text Solution

    |

  3. If a1,a2,a3,a4 are in HP , then 1/(a1a4)sum(r=1)^3ar a(r+1) is roo...

    Text Solution

    |

  4. Let s(n)=1+(1)/(3)+(1)/(3^(2))+…+(1)/(3^(n-1)). The least value of n i...

    Text Solution

    |

  5. Let a(n) be the nth term of a G.P. of positive real numbers. If overse...

    Text Solution

    |

  6. Let [x] = greatest integer le x. Suppose roots of the quadratic equati...

    Text Solution

    |

  7. three number a,b,c are in GP such that : (i) a+b+c=70 (ii) 4a,5b,4c a...

    Text Solution

    |

  8. Suppose a(1),a(2),…a(n) are positive real numbers which are in A.P. If...

    Text Solution

    |

  9. Suppose alpha, gamma are roots of the equation ax^(2)-4x+1=0 and beta,...

    Text Solution

    |

  10. Let an is a positive term of a GP and sum(n=1)^100 a(2n + 1)= 200, sum...

    Text Solution

    |

  11. Suppose a(1),a(2),… are real numbers such that sqrt(a(1))+sqrt(a(2)-1)...

    Text Solution

    |

  12. Let S=overset(oo)underset(n=1)Sigma(5^(n)7^(n))/((7^(n)-5^(n))(7^(n+1)...

    Text Solution

    |

  13. Let S=overset(oo)underset(k=1)Sigma (k(10)^(k)+2^(k+1)5^(k))/(5^(k)2^(...

    Text Solution

    |

  14. Consider an A.P. a1, a2, an , and the G.P. b1,b2, ,bn , such that a...

    Text Solution

    |

  15. Suppose a(1),a(2),…a(201) gt 0 and are in G.P. If a(101)=36 and overse...

    Text Solution

    |

  16. Let P(n) denote the product of first n terms of the G.P. 16, 4, 1, 1/4...

    Text Solution

    |

  17. Suppose x, y in N and log(5)(x)+log(5)(x^(1//2))+log(5)(x^(1//4))+….=y...

    Text Solution

    |

  18. The coefficient of the quadratic equation a x^2+(a+d)x+(a+2d)=0 are co...

    Text Solution

    |

  19. Suppose 1 lt a lt sqrt(e) and log(e)a^(2)+(log(e)a^(2))^(2)+(log(e)a^(...

    Text Solution

    |

  20. For k=2,3,…, let S(k) denote the sum of the infinite G.P. whose first ...

    Text Solution

    |