Home
Class 12
MATHS
Suppose a(1)=45, a(2)=41 and a(k)=2a(k-1...

Suppose `a_(1)=45, a_(2)=41 and a_(k)=2a_(k-1)-a_(k-2) AA k ge 3`, then, value of
`S=(1)/(12) [a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(11)^(2)-a_(12)^(2)]` is

A

89

B

90

C

91

D

92

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question and use the recurrence relation to find the values of \( a_k \) for \( k = 3 \) to \( 12 \). Then we will compute the value of \( S \). ### Step 1: Calculate the first few terms of the sequence Given: - \( a_1 = 45 \) - \( a_2 = 41 \) - The recurrence relation: \( a_k = 2a_{k-1} - a_{k-2} \) for \( k \geq 3 \) Let's calculate the next terms: - **For \( k = 3 \)**: \[ a_3 = 2a_2 - a_1 = 2 \times 41 - 45 = 82 - 45 = 37 \] - **For \( k = 4 \)**: \[ a_4 = 2a_3 - a_2 = 2 \times 37 - 41 = 74 - 41 = 33 \] - **For \( k = 5 \)**: \[ a_5 = 2a_4 - a_3 = 2 \times 33 - 37 = 66 - 37 = 29 \] - **For \( k = 6 \)**: \[ a_6 = 2a_5 - a_4 = 2 \times 29 - 33 = 58 - 33 = 25 \] - **For \( k = 7 \)**: \[ a_7 = 2a_6 - a_5 = 2 \times 25 - 29 = 50 - 29 = 21 \] - **For \( k = 8 \)**: \[ a_8 = 2a_7 - a_6 = 2 \times 21 - 25 = 42 - 25 = 17 \] - **For \( k = 9 \)**: \[ a_9 = 2a_8 - a_7 = 2 \times 17 - 21 = 34 - 21 = 13 \] - **For \( k = 10 \)**: \[ a_{10} = 2a_9 - a_8 = 2 \times 13 - 17 = 26 - 17 = 9 \] - **For \( k = 11 \)**: \[ a_{11} = 2a_{10} - a_9 = 2 \times 9 - 13 = 18 - 13 = 5 \] - **For \( k = 12 \)**: \[ a_{12} = 2a_{11} - a_{10} = 2 \times 5 - 9 = 10 - 9 = 1 \] Now we have: - \( a_1 = 45 \) - \( a_2 = 41 \) - \( a_3 = 37 \) - \( a_4 = 33 \) - \( a_5 = 29 \) - \( a_6 = 25 \) - \( a_7 = 21 \) - \( a_8 = 17 \) - \( a_9 = 13 \) - \( a_{10} = 9 \) - \( a_{11} = 5 \) - \( a_{12} = 1 \) ### Step 2: Calculate \( S \) The formula for \( S \) is given as: \[ S = \frac{1}{12} \left( a_1^2 - a_2^2 + a_3^2 - a_4^2 + \ldots + a_{11}^2 - a_{12}^2 \right) \] We will compute each term: - \( a_1^2 = 45^2 = 2025 \) - \( a_2^2 = 41^2 = 1681 \) - \( a_3^2 = 37^2 = 1369 \) - \( a_4^2 = 33^2 = 1089 \) - \( a_5^2 = 29^2 = 841 \) - \( a_6^2 = 25^2 = 625 \) - \( a_7^2 = 21^2 = 441 \) - \( a_8^2 = 17^2 = 289 \) - \( a_9^2 = 13^2 = 169 \) - \( a_{10}^2 = 9^2 = 81 \) - \( a_{11}^2 = 5^2 = 25 \) - \( a_{12}^2 = 1^2 = 1 \) Now, substituting these values into the formula for \( S \): \[ S = \frac{1}{12} \left( 2025 - 1681 + 1369 - 1089 + 841 - 625 + 441 - 289 + 169 - 81 + 25 - 1 \right) \] Calculating the expression inside the parentheses: \[ = \frac{1}{12} \left( 2025 - 1681 + 1369 - 1089 + 841 - 625 + 441 - 289 + 169 - 81 + 25 - 1 \right) \] \[ = \frac{1}{12} \left( 2025 - 1681 = 344 \right) \] \[ = \frac{1}{12} \left( 344 + 1369 - 1089 = 280 \right) \] \[ = \frac{1}{12} \left( 280 + 841 - 625 = 496 \right) \] \[ = \frac{1}{12} \left( 496 + 441 - 289 = 648 \right) \] \[ = \frac{1}{12} \left( 648 + 169 - 81 = 736 \right) \] \[ = \frac{1}{12} \left( 736 + 25 - 1 = 760 \right) \] \[ = \frac{760}{12} = 63.33 \] Thus, the final value of \( S \) is: \[ S = 63.33 \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES LEVEL-2 (Single Correct Answer Type Questions)|11 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES (Numerical Answer Type Questions)|19 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES CONCEPT-BASED (Single Correct Answer Type Questions)|15 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Papers|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos

Similar Questions

Explore conceptually related problems

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))

If a_(1),a_(2),a_(3),..., are in arithmetic progression,then S=a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+...-a_(2k)^(2) is equal

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If a_(1),a,a_(3)...a_(n) are in A.P then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+....a_(2k-1)^(2)-a_(2k)^(2)=((k)/(2k-1))(a_(1)^(2)-a_(2k)^(2))

If the sequence a_(1),a_(2),a_(3),dots a_(n),.... forms an A.P.then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)+...+a_(4)^(2)=(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))

Suppose a,d in(0,oo) and a_(n)=a+(n-1)d AA n in N. Least value of sum_(k=1)^(n)sqrt(a_(k)^(2)-a_(k)a_(k+1)+a_(k+1)^(2)) is

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

MCGROW HILL PUBLICATION-PROGRESSIONS-EXERCISES LEVEL-1 (Single Correct Answer Type Questions)
  1. If S(n)=81+54+36+24+.. upto n terms, then value of x=(S(n)-4S(n-1)+6S(...

    Text Solution

    |

  2. The sum of first 'n' terms of the series 1^2+(1)(2)+3^2+(3)(4)+5^2+(5)...

    Text Solution

    |

  3. If L = underset( n rarr oo)lim (1+3^(-1))(1+3^(-2))+(1+3^(-4))+(1+3^(-...

    Text Solution

    |

  4. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  5. Coefficient of x^(99) in the expansion of (x-1) (x-3)(x-5)..(x-1999) i...

    Text Solution

    |

  6. Find the sum to n terms of the series 1 + (1 + 2) + (1 + 2 + 3) + .......

    Text Solution

    |

  7. If x= overset(oo)underset(n =0)Sigma a^(n),y= overset(oo)underset(n=0)...

    Text Solution

    |

  8. If the sum of an infinite decreasing G.P. is 3 and sum of the cubes of...

    Text Solution

    |

  9. The sum of the series S= overset(n)underset(r=1)Sigma log ((a^(r+1))/(...

    Text Solution

    |

  10. If the fifth term of a G.P. is 2, then write the product of its 9 t...

    Text Solution

    |

  11. If s is the sum to infnity of a G.P, whose first term is a, then the s...

    Text Solution

    |

  12. For a sequence lt a(n) gt, a(1) =5 and (a(r+1))/(a(r))=(1)/(2) AA r, t...

    Text Solution

    |

  13. If the H.M.of two numbers is to their GM. is 12:13 then the numbers ar...

    Text Solution

    |

  14. The H.M. between two numbers is 16/5, their A.M. is A and G.M. is G. I...

    Text Solution

    |

  15. If a(r)=a+(r-1)d is rth term of an A.P., then a(n)^(2)-2a(n-1)^(2)+a(n...

    Text Solution

    |

  16. If A=1+r^2+r^(2a)+...oo=a and B=1+r^b+r^(2b)+...oo=b then a/b is equal...

    Text Solution

    |

  17. Suppose a(1)=45, a(2)=41 and a(k)=2a(k-1)-a(k-2) AA k ge 3, then, valu...

    Text Solution

    |

  18. Suppose P(x)=1-x+x^(2)-x^(3)+…+x^(2012) is expressed as a polynomial i...

    Text Solution

    |

  19. The sum of first 26 terms of an A.P. a(1),a(2),a(3),.. if a(2)+a(6)+a(...

    Text Solution

    |

  20. In the sum of first n terms of an A.P. is cn^2, then the sum of square...

    Text Solution

    |