Home
Class 12
MATHS
If a1,a2,a3,...an are in A.P with common...

If `a_1,a_2,a_3,...a_n` are in A.P with common difference `d` then find the sum of the following series `sind(coseca_1coseca_2+coseca_2coseca_3+....coseca_(n-1)coseca_n)`

A

`sec a_(1)-sec a_(n)`

B

`cosec a_(1)-cosec a_(n)`

C

`cot a_(1)-cot a_(n)`

D

`tan a_(1)-tan a_(n)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES (Numerical Answer Type Questions)|19 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/JEE Main Papers|87 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISES LEVEL-1 (Single Correct Answer Type Questions)|65 Videos
  • PROBABILITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Papers|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,...a_n are in A.P with common difference d !=0 then the value of sind(coseca_1 coseca_2 +cosec a_2 cosec a_3+...+cosec a_(n-1) cosec a_n) will be

If a_1, a_2, a_n are in A.P. with common difference d!=0 , then the sum of the series sind[seca_1seca_2+(sec)_2seca_3+....+s e ca_(n-1)(sec)_n] is : a.cos e ca_n-cos e ca b. cota_n-cota c. s e ca_n-s e ca d. t a na_n-t a na

If a_(1),a-(2),a_(3),………….a_(n) are in A.P. with common differecne d, prove that sin [cosec a_(1)coseca_(2)+cosec a_(2)cosec a_(3)+………….+cosec a_(n-1)cosec a_(n)]=cota_(1)-cota_(n) .

4.If a, a, ag.....an are in A.P. and commondifference is d then the value ofsind(coseca, coseca.y + coseca, cosecaz+ ... cosecdn-1 cosecan)will be-(1) seca1 - Secon (2) coseca1 - cosecan(3) cota1-cotan(4) tandi-tanan

If a_1,a_2,a_3,.....,a_n are in AP where a_i ne kpi for all i , prove that cosec a_1* cosec a_2+ cosec a_2* cosec a_3+...+ cosec a_(n-1)* cosec a_n=(cota_1-cota_n)/(sin(a_2-a_1)) .

If a_1,a_2,a_3,...,a_n be in AP whose common difference is d then prove that sum_(i=1)^n a_ia_(i+1)=n{a_1^2+na_1d+(n^2-1)/3 d^2} .

If a_1,a_2,a_3,...,a_n are in AP and a_i ne (2k-1)pi/2 for all i , find the sum seca_1*seca_2+seca_2*seca_3+seca_3*seca_4+...+seca_(n-1)*seca_n .

If a_1,a_2,a_3,. . . ,a_n. . . are in A.P. such that a_4−a_7+a_10=m , then sum of the first 13 terms of the A.P.is