Home
Class 12
MATHS
The set of values of p in R for which t...

The set of values of `p in R` for which the equation `x^2 +px+ 1/4 (p+2)= 0` will have real roots is

A

`[2,+oo)`

B

`(-oo, 2]`

C

`(-oo,-1]`

D

`R-(-1,2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the set of values of \( p \in \mathbb{R} \) for which the equation \[ x^2 + px + \frac{1}{4}(p + 2) = 0 \] has real roots, we will use the condition that the discriminant of the quadratic equation must be greater than or equal to zero. ### Step 1: Identify coefficients In the given quadratic equation, we can identify the coefficients: - \( a = 1 \) - \( b = p \) - \( c = \frac{1}{4}(p + 2) \) ### Step 2: Write the discriminant The discriminant \( D \) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = p^2 - 4 \cdot 1 \cdot \frac{1}{4}(p + 2) \] ### Step 3: Simplify the discriminant Now, simplify the expression for the discriminant: \[ D = p^2 - (p + 2) \] \[ D = p^2 - p - 2 \] ### Step 4: Set the discriminant greater than or equal to zero For the equation to have real roots, we need: \[ p^2 - p - 2 \geq 0 \] ### Step 5: Factor the quadratic expression Next, we factor the quadratic expression: \[ p^2 - p - 2 = (p - 2)(p + 1) \] ### Step 6: Solve the inequality We need to solve the inequality: \[ (p - 2)(p + 1) \geq 0 \] ### Step 7: Find critical points The critical points occur when each factor is zero: 1. \( p - 2 = 0 \) → \( p = 2 \) 2. \( p + 1 = 0 \) → \( p = -1 \) ### Step 8: Test intervals We will test the sign of the expression \( (p - 2)(p + 1) \) in the intervals determined by the critical points \( -1 \) and \( 2 \): 1. **Interval \( (-\infty, -1) \)**: Choose \( p = -2 \) \[ (-2 - 2)(-2 + 1) = (-4)(-1) = 4 \quad (\text{positive}) \] 2. **Interval \( (-1, 2) \)**: Choose \( p = 0 \) \[ (0 - 2)(0 + 1) = (-2)(1) = -2 \quad (\text{negative}) \] 3. **Interval \( (2, \infty) \)**: Choose \( p = 3 \) \[ (3 - 2)(3 + 1) = (1)(4) = 4 \quad (\text{positive}) \] ### Step 9: Write the solution set From the test results, the expression \( (p - 2)(p + 1) \geq 0 \) is satisfied in the intervals: - \( (-\infty, -1] \) - \( [2, \infty) \) Thus, the solution set for \( p \) is: \[ p \in (-\infty, -1] \cup [2, \infty) \] ### Final Answer The set of values of \( p \) for which the equation has real roots is: \[ (-\infty, -1] \cup [2, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • Some New Pattern Problems

    A DAS GUPTA|Exercise Exercise|137 Videos
  • Screening Tests

    A DAS GUPTA|Exercise Exercise|38 Videos
  • Total Conditional Probability and Bayes' Theorem

    A DAS GUPTA|Exercise Exercise|29 Videos

Similar Questions

Explore conceptually related problems

The set of vlaue of k (k in R) for which the equation x ^(2) -4 |x|+3 -|k-1|=0 will have exactly four real roots, is:

The set of values of k(k in R) for which the equation x^(2)-4|x|+3-|k-1|=0 will have exactly four real roots,is

The set of values of p for which the equation px^2=ln x possess a single root is

The set of values of p inR for which x^2 +px+ 1/4 (p+2)ge 0 for all x in R is

The value of p for which the quadratic equation 2px^(2) + 6x + 5 = 0 has real and distinct roots is

What is the value of 'p' for which the quadratic equation 2px^2 + 6x + 5 = 0 has equal roots.

Determine the value (s) of p for which the quadratic equation 4x^(2) - 3px + 9 has real roots.

For which value of p among the following, does the quadratic equation 3x^(2) + px + 1 = 0 have real roots ?

The set of values of p for which the roots of the equation 3x^(2)+2x+p(p-1)=0 are of opposite signs is :

A DAS GUPTA-Some New Pattern Problems-Exercise
  1. There are n urns each containing (n + 1) balls such that the i^(th) ur...

    Text Solution

    |

  2. The set of values of p inR for which x^2 +px+ 1/4 (p+2)ge 0 for allx ...

    Text Solution

    |

  3. The set of values of p in R for which the equation x^2 +px+ 1/4 (p+2)...

    Text Solution

    |

  4. If p is chosen at random from the interval [0, 6] then the probability...

    Text Solution

    |

  5. A bag contain 2 white balls and 1 red balls. The experiment is done 10...

    Text Solution

    |

  6. A bag contain 2 white balls and 1 red balls. The experiment is done 10...

    Text Solution

    |

  7. If n^(2)+2n -8 is a prime number where n in N then n is

    Text Solution

    |

  8. If z is a complex number, then | 3z -1| = 3 | z-2| represents

    Text Solution

    |

  9. In Q.no. 88, if z be any point in A frown B frown C and omega be any p...

    Text Solution

    |

  10. Which of the following is true?

    Text Solution

    |

  11. Which of the following is true?

    Text Solution

    |

  12. Consider the function f : (-oo , oo) to (-oo , oo) defined by f(x) = (...

    Text Solution

    |

  13. Consider the line L1=(x+1)/3=(y+2)/1=(z+1)/2 L2=(x-2)/1=(y+2)/2=(z-3...

    Text Solution

    |

  14. Consider the line L1=(x+1)/3=(y+2)/1=(z+1)/2 L2=(x-2)/1=(y+2)/2=(z-3...

    Text Solution

    |

  15. cosider the lines, L1=(x+1)/3=(y+2)/1=(z+2)/2 L2=(x-2)/1=(y+2)/2=(z-...

    Text Solution

    |

  16. Consider the function defined implicitly by the equation y^3-3y+x=0 on...

    Text Solution

    |

  17. The area of the region bounded by the curve y= f( x ), x-axis, and the...

    Text Solution

    |

  18. int(-1)^1 g'(x) dx=

    Text Solution

    |

  19. The equation of the circle C with center at (sqrt3,1) is

    Text Solution

    |

  20. The number of 2 x 2 matrices A such that all entries are either 1 or 0...

    Text Solution

    |