Home
Class 12
MATHS
The value of sin{tan^(-1) (tan ((7pi)/6)...

The value of `sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))}` is _____.

A

0

B

1

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sin\left(\tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) + \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right)\right) \] Let's break it down step by step. ### Step 1: Simplify \( \tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) \) 1. First, we note that \( \frac{7\pi}{6} \) can be rewritten as: \[ \frac{7\pi}{6} = \pi + \frac{\pi}{6} \] 2. The tangent function has a periodicity of \( \pi \), so: \[ \tan\left(\frac{7\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) \] 3. Now, we apply the inverse tangent function: \[ \tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) \] 4. Since \( \frac{\pi}{6} \) is in the range of \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we have: \[ \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6} \] ### Step 2: Simplify \( \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right) \) 1. Next, we simplify \( \frac{7\pi}{3} \): \[ \frac{7\pi}{3} = 2\pi + \frac{\pi}{3} \] 2. The cosine function also has a periodicity of \( 2\pi \), so: \[ \cos\left(\frac{7\pi}{3}\right) = \cos\left(2\pi + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) \] 3. Now, we apply the inverse cosine function: \[ \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right) = \cos^{-1}\left(\cos\left(\frac{\pi}{3}\right)\right) \] 4. Since \( \frac{\pi}{3} \) is in the range of \( [0, \pi] \), we have: \[ \cos^{-1}\left(\cos\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3} \] ### Step 3: Combine the results Now we can combine the results from Step 1 and Step 2: \[ \sin\left(\tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) + \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right)\right) = \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) \] ### Step 4: Calculate \( \frac{\pi}{6} + \frac{\pi}{3} \) 1. Convert \( \frac{\pi}{3} \) to a common denominator: \[ \frac{\pi}{3} = \frac{2\pi}{6} \] 2. Now add: \[ \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Step 5: Calculate \( \sin\left(\frac{\pi}{2}\right) \) Finally, we calculate: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Integrated Tests

    A DAS GUPTA|Exercise Exercise|23 Videos
  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

2tan^(-1)(tan((7pi)/6))

tan^(-1)("tan"(7pi)/(5))

(cos^(-1)(sin((7 pi)/6))

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

tan^(-1)(tan((6 pi)/(7)))

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

Find the value of : tan^(-1){tan(-(7pi)/8)}

Evaluate : tan^(-1)(tan ((6pi)/(7)))

A DAS GUPTA-Inverse Circular Functions -Exercise
  1. 2sin^(-1) (sqrt(1-x)/2) = cos^(-1)().

    Text Solution

    |

  2. sin^(-1)(3x -4x^(3)) = lambda sin^(-1)x then lambda =.

    Text Solution

    |

  3. The numerical value of tan^(-1) 1+ tan^(-1)2 + tan^(-1)3 =.

    Text Solution

    |

  4. The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =.

    Text Solution

    |

  5. If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =.

    Text Solution

    |

  6. cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) ().

    Text Solution

    |

  7. The principal value of cos^(-1) (cos 7pi/6)= .

    Text Solution

    |

  8. The value of sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))} is...

    Text Solution

    |

  9. sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

    Text Solution

    |

  10. 2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is true if

    Text Solution

    |

  11. If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi, prove that x + y + z = xyz.

    Text Solution

    |

  12. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  13. If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1).

    Text Solution

    |

  14. If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = .

    Text Solution

    |

  15. Prove that sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=...

    Text Solution

    |

  16. If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x then the val...

    Text Solution

    |

  17. If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt...

    Text Solution

    |

  18. The principal value of cos^(-1)cos ((2pi)/3)+ sin^(-1) sin((2pi)/3) is

    Text Solution

    |

  19. If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-...

    Text Solution

    |

  20. The equation sin^(-1)x - 3sin^(-1)a =0 has real solutions for x if

    Text Solution

    |