Home
Class 12
MATHS
2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is t...

`2tan^(-1)x = tan^(-1) 2x/(1-x^(2))` is true if

A

`x lt 1`

B

`x gt 1`

C

`x lt 0`

D

`x in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \), we will analyze the conditions under which this equality holds true. ### Step 1: Understand the formula for the sum of inverse tangents We know from trigonometric identities that: \[ \tan^{-1}a + \tan^{-1}b = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] This formula is valid under the condition that \( ab < 1 \). ### Step 2: Apply the formula to our equation In our case, we can set \( a = x \) and \( b = x \): \[ \tan^{-1}x + \tan^{-1}x = \tan^{-1}\left(\frac{x+x}{1-xx}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Thus, we can rewrite the left-hand side: \[ 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] ### Step 3: Identify the condition for validity For the formula to hold, we need: \[ x \cdot x < 1 \quad \Rightarrow \quad x^2 < 1 \] This implies: \[ |x| < 1 \] Thus, the condition for the equality \( 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) to be true is: \[ x < 1 \quad \text{and} \quad x > -1 \] ### Conclusion The equation \( 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) is true if \( |x| < 1 \).
Promotional Banner

Topper's Solved these Questions

  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Integrated Tests

    A DAS GUPTA|Exercise Exercise|23 Videos
  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =______.

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

A DAS GUPTA-Inverse Circular Functions -Exercise
  1. 2sin^(-1) (sqrt(1-x)/2) = cos^(-1)().

    Text Solution

    |

  2. sin^(-1)(3x -4x^(3)) = lambda sin^(-1)x then lambda =.

    Text Solution

    |

  3. The numerical value of tan^(-1) 1+ tan^(-1)2 + tan^(-1)3 =.

    Text Solution

    |

  4. The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =.

    Text Solution

    |

  5. If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =.

    Text Solution

    |

  6. cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) ().

    Text Solution

    |

  7. The principal value of cos^(-1) (cos 7pi/6)= .

    Text Solution

    |

  8. The value of sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))} is...

    Text Solution

    |

  9. sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

    Text Solution

    |

  10. 2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is true if

    Text Solution

    |

  11. If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi, prove that x + y + z = xyz.

    Text Solution

    |

  12. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  13. If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1).

    Text Solution

    |

  14. If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = .

    Text Solution

    |

  15. Prove that sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=...

    Text Solution

    |

  16. If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x then the val...

    Text Solution

    |

  17. If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt...

    Text Solution

    |

  18. The principal value of cos^(-1)cos ((2pi)/3)+ sin^(-1) sin((2pi)/3) is

    Text Solution

    |

  19. If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-...

    Text Solution

    |

  20. The equation sin^(-1)x - 3sin^(-1)a =0 has real solutions for x if

    Text Solution

    |