Home
Class 12
MATHS
If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = l...

If `tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x` then the value of `lambda` is

A

2

B

`1/2`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) = \lambda \tan^{-1}(x) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). Then we can express \( 1 + x^2 \) as: \[ 1 + x^2 = 1 + \tan^2(\theta) = \sec^2(\theta) \] ### Step 2: Rewrite the left-hand side Now, substituting \( x \) in the left-hand side gives: \[ \tan^{-1} \left( \frac{\sqrt{\sec^2(\theta)} - 1}{\tan(\theta)} \right) \] Since \( \sqrt{\sec^2(\theta)} = \sec(\theta) \), we have: \[ \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] ### Step 3: Simplify the expression Using the identity \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), we can rewrite: \[ \frac{\sec(\theta) - 1}{\tan(\theta)} = \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{1 - \cos(\theta)}{\sin(\theta)} \] ### Step 4: Use the identity for \( 1 - \cos(\theta) \) We can use the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ \frac{1 - \cos(\theta)}{\sin(\theta)} = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right) \] ### Step 5: Rewrite the left-hand side Thus, we have: \[ \tan^{-1} \left( \tan\left(\frac{\theta}{2}\right) \right) = \frac{\theta}{2} \] ### Step 6: Relate \( \theta \) back to \( x \) Since \( \theta = \tan^{-1}(x) \), we can substitute back: \[ \frac{\tan^{-1}(x)}{2} = \lambda \tan^{-1}(x) \] ### Step 7: Solve for \( \lambda \) Dividing both sides by \( \tan^{-1}(x) \) (assuming \( \tan^{-1}(x) \neq 0 \)): \[ \frac{1}{2} = \lambda \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Integrated Tests

    A DAS GUPTA|Exercise Exercise|23 Videos
  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

tan[(sqrt(1+x^(2))-1)/x] =

tan^(-1)(sqrt((1-x)/(1+x)))

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x

If tan^(-1)((1-x)/(1+x))=1/2 tan^(-1) x then the value of x is

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

A DAS GUPTA-Inverse Circular Functions -Exercise
  1. 2sin^(-1) (sqrt(1-x)/2) = cos^(-1)().

    Text Solution

    |

  2. sin^(-1)(3x -4x^(3)) = lambda sin^(-1)x then lambda =.

    Text Solution

    |

  3. The numerical value of tan^(-1) 1+ tan^(-1)2 + tan^(-1)3 =.

    Text Solution

    |

  4. The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =.

    Text Solution

    |

  5. If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =.

    Text Solution

    |

  6. cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) ().

    Text Solution

    |

  7. The principal value of cos^(-1) (cos 7pi/6)= .

    Text Solution

    |

  8. The value of sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))} is...

    Text Solution

    |

  9. sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

    Text Solution

    |

  10. 2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is true if

    Text Solution

    |

  11. If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi, prove that x + y + z = xyz.

    Text Solution

    |

  12. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  13. If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1).

    Text Solution

    |

  14. If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = .

    Text Solution

    |

  15. Prove that sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=...

    Text Solution

    |

  16. If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x then the val...

    Text Solution

    |

  17. If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt...

    Text Solution

    |

  18. The principal value of cos^(-1)cos ((2pi)/3)+ sin^(-1) sin((2pi)/3) is

    Text Solution

    |

  19. If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-...

    Text Solution

    |

  20. The equation sin^(-1)x - 3sin^(-1)a =0 has real solutions for x if

    Text Solution

    |