Home
Class 12
MATHS
If phi= tan^(-1)(( xsqrt3)/(2k-x)) and p...

If `phi= tan^(-1)(( xsqrt3)/(2k-x))` and `psi = tan^(-1) ((2x-k)/(k*sqrt3))` then one value of `phi - psi` is

A

`pi/6`

B

`pi/3`

C

`(5pi)/6`

D

`(4pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \phi - \psi \) where: \[ \phi = \tan^{-1}\left(\frac{x\sqrt{3}}{2k - x}\right) \] \[ \psi = \tan^{-1}\left(\frac{2x - k}{k\sqrt{3}}\right) \] We will use the formula for the difference of inverse tangents: \[ \tan^{-1} A - \tan^{-1} B = \tan^{-1}\left(\frac{A - B}{1 + AB}\right) \] ### Step 1: Identify \( A \) and \( B \) Let: \[ A = \frac{x\sqrt{3}}{2k - x} \] \[ B = \frac{2x - k}{k\sqrt{3}} \] ### Step 2: Calculate \( A - B \) Now, we calculate \( A - B \): \[ A - B = \frac{x\sqrt{3}}{2k - x} - \frac{2x - k}{k\sqrt{3}} \] To subtract these fractions, we need a common denominator: \[ A - B = \frac{x\sqrt{3} \cdot k\sqrt{3} - (2x - k)(2k - x)}{(2k - x)(k\sqrt{3})} \] ### Step 3: Expand the numerator Expanding the numerator: 1. First term: \[ x\sqrt{3} \cdot k\sqrt{3} = 3kx \] 2. Second term: \[ (2x - k)(2k - x) = 4kx - 2x^2 - 2k^2 + kx \] So, the second term becomes: \[ - (4kx - 2x^2 - 2k^2 + kx) = -4kx + 2x^2 + 2k^2 - kx \] Combining these gives: \[ 3kx - (4kx - 2x^2 + 2k^2 - kx) = 3kx - 4kx + 2x^2 + 2k^2 - kx = -2kx + 2x^2 + 2k^2 \] ### Step 4: Calculate \( 1 + AB \) Next, we calculate \( 1 + AB \): \[ AB = \left(\frac{x\sqrt{3}}{2k - x}\right) \left(\frac{2x - k}{k\sqrt{3}}\right) = \frac{x(2x - k)}{(2k - x)k} \] So, \[ 1 + AB = 1 + \frac{x(2x - k)}{(2k - x)k} = \frac{(2k - x)k + x(2x - k)}{(2k - x)k} \] ### Step 5: Combine results Now we can substitute \( A - B \) and \( 1 + AB \) into the formula: \[ \phi - \psi = \tan^{-1}\left(\frac{A - B}{1 + AB}\right) \] ### Step 6: Simplify After simplifying the numerator and denominator, we find that: \[ \phi - \psi = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Step 7: Final Result We know that: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, one value of \( \phi - \psi \) is: \[ \phi - \psi = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Integrated Tests

    A DAS GUPTA|Exercise Exercise|23 Videos
  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

if phi=tan^(-1)((x sqrt(3))/(2k-x)) and theta=tan^(-1)((2x-k)/(k sqrt(3))) then one of the value of phi-theta is

If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)) , then the value of A-B is

If A=tan^(-1)((x sqrt(3))/(2k-x)) and B=tan^(-1)((2x-k)/(k sqrt(3))) then find the value of A-B(A)0^(@)(B)30^(@)(C)60^(@)(D)45^(@)

If tan((pi)/(4)+phi)=(1)/(3) ,then the value of cos2 phi is

If tan phi=(4)/(3), then the value of tan3 phi, is

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If tan theta = 1 and sin phi = (1)/( sqrt(2)) , then the value of cos (theta + phi) is

A DAS GUPTA-Inverse Circular Functions -Exercise
  1. 2sin^(-1) (sqrt(1-x)/2) = cos^(-1)().

    Text Solution

    |

  2. sin^(-1)(3x -4x^(3)) = lambda sin^(-1)x then lambda =.

    Text Solution

    |

  3. The numerical value of tan^(-1) 1+ tan^(-1)2 + tan^(-1)3 =.

    Text Solution

    |

  4. The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =.

    Text Solution

    |

  5. If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =.

    Text Solution

    |

  6. cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) ().

    Text Solution

    |

  7. The principal value of cos^(-1) (cos 7pi/6)= .

    Text Solution

    |

  8. The value of sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))} is...

    Text Solution

    |

  9. sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

    Text Solution

    |

  10. 2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is true if

    Text Solution

    |

  11. If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi, prove that x + y + z = xyz.

    Text Solution

    |

  12. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  13. If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1).

    Text Solution

    |

  14. If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = .

    Text Solution

    |

  15. Prove that sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=...

    Text Solution

    |

  16. If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x then the val...

    Text Solution

    |

  17. If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt...

    Text Solution

    |

  18. The principal value of cos^(-1)cos ((2pi)/3)+ sin^(-1) sin((2pi)/3) is

    Text Solution

    |

  19. If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-...

    Text Solution

    |

  20. The equation sin^(-1)x - 3sin^(-1)a =0 has real solutions for x if

    Text Solution

    |