Home
Class 12
MATHS
If lambda is a root of x^(2) + 3x + 1 = ...

If `lambda` is a root of `x^(2) + 3x + 1 = 0` then `tan^(-1) lambda+ tan^(-1) (1/lambda)` is equal to

A

`pi/2`

B

`-pi/2`

C

`pi/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}(\lambda) + \tan^{-1}\left(\frac{1}{\lambda}\right) \) where \( \lambda \) is a root of the equation \( x^2 + 3x + 1 = 0 \). ### Step-by-Step Solution: 1. **Find the roots of the quadratic equation**: The given equation is: \[ x^2 + 3x + 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 3, c = 1 \). Plugging in these values: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 - 4}}{2} = \frac{-3 \pm \sqrt{5}}{2} \] Thus, the roots are: \[ \lambda_1 = \frac{-3 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{-3 - \sqrt{5}}{2} \] 2. **Identify the sign of the roots**: Both roots \( \lambda_1 \) and \( \lambda_2 \) are negative since \( \sqrt{5} < 3 \). Thus, we can denote \( \lambda = \lambda_1 \) or \( \lambda = \lambda_2 \). 3. **Use the identity for the sum of inverse tangents**: We know that: \[ \tan^{-1}(\lambda) + \tan^{-1}\left(\frac{1}{\lambda}\right) = \frac{\pi}{2} \quad \text{if } \lambda > 0 \] However, since \( \lambda \) is negative, we need to modify our approach: \[ \tan^{-1}(\lambda) + \tan^{-1}\left(\frac{1}{\lambda}\right) = \tan^{-1}(\lambda) + \cot^{-1}(\lambda) \] 4. **Convert cotangent to tangent**: Since \( \cot^{-1}(\lambda) = \frac{\pi}{2} - \tan^{-1}(\lambda) \): \[ \tan^{-1}(\lambda) + \cot^{-1}(\lambda) = \tan^{-1}(\lambda) + \left(\frac{\pi}{2} - \tan^{-1}(\lambda)\right) = \frac{\pi}{2} \] 5. **Final result**: Therefore, we conclude that: \[ \tan^{-1}(\lambda) + \tan^{-1}\left(\frac{1}{\lambda}\right) = \frac{\pi}{2} \] ### Conclusion: The value of \( \tan^{-1}(\lambda) + \tan^{-1}\left(\frac{1}{\lambda}\right) \) is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Integrated Tests

    A DAS GUPTA|Exercise Exercise|23 Videos
  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

If lambda= number of real root of x^(4)+x^(2)-2=0 then [cos^(2)((1)/(lambda))] is equal to

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

If x_(1)+x_(2)=(pi)/(2) and x_(2)+x_(3)=x_(1), then tan x_(1)=tan x_(2)+lambda tan x_(3) where lambda is equal to

int_ (lambda =) (dx) / (sqrt (1-tan ^ (2) x)) = (1) / (lambda) sin ^ (- 1) (lambda sin x) + C, then

tan^(-1)4+tan^(-1)5=cot^(-1)lambda, then find lambda

lim_(lambda rarr0)(int_(0)^(1)(1+x)^(lambda)dx)^((1)/(lambda)) is equal to

If tan^(-1) 4 + tan ^(-1) 5 = cot^(-1) lambda " , then find " 'lambda'

The value of lambda for which the sum of squares of roots of the equation x^(2)+(3-lambda)x+2=lambda is minimum,then lambda is equal to (a) 2 (b) -1 (c) -3(d)-2

A DAS GUPTA-Inverse Circular Functions -Exercise
  1. 2sin^(-1) (sqrt(1-x)/2) = cos^(-1)().

    Text Solution

    |

  2. sin^(-1)(3x -4x^(3)) = lambda sin^(-1)x then lambda =.

    Text Solution

    |

  3. The numerical value of tan^(-1) 1+ tan^(-1)2 + tan^(-1)3 =.

    Text Solution

    |

  4. The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =.

    Text Solution

    |

  5. If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =.

    Text Solution

    |

  6. cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) ().

    Text Solution

    |

  7. The principal value of cos^(-1) (cos 7pi/6)= .

    Text Solution

    |

  8. The value of sin{tan^(-1) (tan ((7pi)/6) + cos^(-1)(cos ((7pi)/3))} is...

    Text Solution

    |

  9. sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

    Text Solution

    |

  10. 2tan^(-1)x = tan^(-1) 2x/(1-x^(2)) is true if

    Text Solution

    |

  11. If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi, prove that x + y + z = xyz.

    Text Solution

    |

  12. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  13. If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1).

    Text Solution

    |

  14. If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = .

    Text Solution

    |

  15. Prove that sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=...

    Text Solution

    |

  16. If tan^(-1) (sqrt(( 1 +x^(2)) -1)/x) = lambda tan^(-1)x then the val...

    Text Solution

    |

  17. If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt...

    Text Solution

    |

  18. The principal value of cos^(-1)cos ((2pi)/3)+ sin^(-1) sin((2pi)/3) is

    Text Solution

    |

  19. If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-...

    Text Solution

    |

  20. The equation sin^(-1)x - 3sin^(-1)a =0 has real solutions for x if

    Text Solution

    |