Home
Class 12
MATHS
log3 log2 logsqrt3 (81) = ....

`log_3 log_2 log_sqrt3 (81)` = ______.

Promotional Banner

Topper's Solved these Questions

  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos
  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Recent IIT questions

    A DAS GUPTA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate log_2 log_2 log_3 81

Which of the following when simplified reduces to unity? I. log_(1.5) log_(4) log_sqrt3 81 II. log_(2) sqrt6 +log_(2) sqrt(2/3) III. -1/6log_(sqrt(3)/2) ((64)/(27)) IV. log_(3.5) (1+2+3/6) The correct choice is:

If N = antilog_7 (log_3 (antilog_sqrt3 (log_3 81))), then log_3 N lies between two successive integers a and b. Find (a + b).

the value of log_(3)(log_(2)(log_(sqrt(3))81))

log_(x)log_(2)log_(3)81

Prove that log_(2)log_(2)log_(sqrt(3))81=1

Determine the value of log_4 {log_sqrt2(log_3 81)}

Prove that: log_(3)log_(2)log_(sqrt(5))(625)=1

If P =3^sqrt(log_(3)2)-2^(sqrt(log_(2)3))and Q=log_(2)log_(3)log_(2)log _(sqrt(3))81, then

log_(2)[log_(2) {log_(2)(log_(3) 81)}] =