Home
Class 12
MATHS
If log x/(b-c) =logy/(c-a) = logz/((a-b)...

If `log x/(b-c) =logy/(c-a) = logz/((a-b)` then the value of xyz is

A

1

B

3

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\log x}{b - c} = \frac{\log y}{c - a} = \frac{\log z}{a - b} \] Let's denote this common value as \( k \). Therefore, we can write: 1. \(\log x = k(b - c)\) 2. \(\log y = k(c - a)\) 3. \(\log z = k(a - b)\) Next, we can express \( x \), \( y \), and \( z \) in terms of \( k \): \[ x = e^{k(b - c)} \] \[ y = e^{k(c - a)} \] \[ z = e^{k(a - b)} \] Now, we need to find the product \( xyz \): \[ xyz = e^{k(b - c)} \cdot e^{k(c - a)} \cdot e^{k(a - b)} \] Using the property of exponents that states \( e^a \cdot e^b = e^{a + b} \), we can combine the exponents: \[ xyz = e^{k[(b - c) + (c - a) + (a - b)]} \] Now, simplify the expression inside the brackets: \[ (b - c) + (c - a) + (a - b) = b - c + c - a + a - b = 0 \] Thus, we have: \[ xyz = e^{k \cdot 0} = e^0 = 1 \] Therefore, the value of \( xyz \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos
  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Recent IIT questions

    A DAS GUPTA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If a^x=b,b^y=c,c^z=a then the value of xyz is: