Home
Class 12
MATHS
Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)lo...

Evaluate `lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)`

A

a)log(27/4e)

B

b)log(27/e^2)

C

c)log(4/e)

D

d)none of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • Definite Integration

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Coordinates and Straight Lines

    A DAS GUPTA|Exercise EXERCISE|111 Videos
  • Differential Equation of the First Order

    A DAS GUPTA|Exercise Exercise|64 Videos

Similar Questions

Explore conceptually related problems

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))