Home
Class 12
MATHS
Prove that int0^(2a) f(x)/(f(x)+f(2a-x))...

Prove that `int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a`

Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

int_(0)^(a) (f(a+x) + f(a-x) ) dx =

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

int_(a)^( Prove that: )(f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)