Home
Class 12
MATHS
Prove that int(0)^(pi//2)(2logsinx-logsi...

Prove that `int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2)`.

Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(2logcosx-logsin2x)\ dx=-(pi)/(2)log2

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx

Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

int_0^(pi//2)log(tanx)dx

Prove that int_0^(pi//2) sin 2x log tanx dx=0

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .