Home
Class 12
MATHS
Prove that: y=int(1/8)^(sin^2x)sin^(-1)s...

Prove that: `y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1),w h e r e0lt=xlt=pi/2,` is the equation of a straight line parallel to the x-axis. Find the equation.

Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: y=int_((1)/(8))^(sin^(2)x)sin^(-1)sqrt(t)dt+int_((1)/(8))^(cos^(2)x)cos^(-1)sqrt(t) where 0<=x<=(pi)/(2), is the equation of a straight line parallel to the x-axis.Find the equation.

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

int_(-2)^(-1) sqrt(5+x)(sin^(-1)(e^(x))+cos^(-1)(e^(x)))dx

Prove the following : int_(0)^(1)e^(-x)cos^(2)xdx lt int_(0)^(1)e^(-x^(2))cos^(2)xdx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

F(x)= int_(0)^(x)(cost)/((1+t^(2)))dt0lt=xlt=2pi . Then

A DAS GUPTA-Properties and Application of definite Integrals-EXERCISE
  1. int(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

    Text Solution

    |

  2. Evaluate int0^1 log(1+x)/(1+x^2)dx

    Text Solution

    |

  3. Prove that: y=int(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int(1/8)^(cos^2x)cos^...

    Text Solution

    |

  4. Evaluate the following: int0^(pi/2) |cosx-sinx|dx

    Text Solution

    |

  5. Evaluate the following:int-2^2(|x|+|x-1|)dx

    Text Solution

    |

  6. Prove that inta^b{[x]+[-x]}dx=a-b,where [x]is the greatest integer lex...

    Text Solution

    |

  7. Statement-I int0^9[sqrtx]dx=13, Statement-II int0^(n^2) [sqrt x]dx=(n(...

    Text Solution

    |

  8. Show that: int0^x[x]dx=[x]([x]-1)/2+[x](x-[x]), where [x] denotes the ...

    Text Solution

    |

  9. The value of the integral overset(100pi)underset(0)int sqrt(1-cos2x)" ...

    Text Solution

    |

  10. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  11. Evaluate the following:int0^(10pi)|cosx|dx

    Text Solution

    |

  12. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  13. Show that: inta^bf(x)dx=int(a+c)^(b+c)f(x-c)dx and hence show that int...

    Text Solution

    |

  14. If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove t...

    Text Solution

    |

  15. If f(t) is an odd function, then varphi(x)=inta^xf(t)dx is an even fun...

    Text Solution

    |

  16. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  17. If f(a+x)=f(x), then prove that inta^(n a)f(x)dx=(n-1)int0^af(x)dx whe...

    Text Solution

    |

  18. Evaluate: int0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

    Text Solution

    |

  19. Let a, b, c be non-zero real numbers such that ; int0^1 (1 + cos^8 x)(...

    Text Solution

    |

  20. If f(X) is continuous and ninNthen the value of int-2^2{f(x)-f(-x)}x^...

    Text Solution

    |