Home
Class 12
MATHS
Statement-I int0^9[sqrtx]dx=13, Statemen...

Statement-I `int_0^9[sqrtx]dx=13`, Statement-II `int_0^(n^2) [sqrt x]dx=(n(n-1)(4n+1))/6`, `n in N` (where [.] denotes greatest integer function) (1) Statement-I is true, Statement-II is true Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true Statement-II is not a correct explanation for Statement-I, (3) Statement-I is true, Statement-II is false. (4) Statment-I is false, Statement-II is true.

Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.

Let A be a 2""xx""2 matrix Statement 1 : a d j""(a d j""A)""=""A Statement 2 : |a d j""A|""=""|A| (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Statement-1: int((x^2+1)/x^2)e^((x^2+1)/x^(2))dx=e^((x^2+1)/x^(2))+C Statement-2: intf(x)e^(f(x))dx=f(x)+C (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Statement -1 (1/2)^7lt(1/3)^4 implies 7log(1/2)lt4log(1/3)implies7lt4 Statement-2 If axltay , where alt0 ,x, ygt0 , then xgty . (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true.

Statement-1: intsin^-1xdx+intsin^-1sqrt(1-x^2)dx=pi/2x+c Statement-2: sin^-1x+cos^-1x=pi/2 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Statement-1: intdx/(x(1+logx)^2)=-1/(1+logx)+C , Statement-2: int(f(x))^nf\'(x)dx=(f(x))^(n+1)/(n+1)+C, n+1!=0 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Statement-1: The function F(x)=intsin^2xdx satisfies F(x+pi)=F(x),AAxinR ,Statement-2: sin^2(x+pi)=sin^2x (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x. (A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I. (B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I. (C) Statement I is true, Statement II is false. (D) Statement I is false, Statement II is ture.

Statement 1: The variance of first n even natural numbers is (n^2-1)/4 Statement 2: The sum of first n natural numbers is (n(n+1)/2 and the sum of squares of first n natural numbers is (n(n+1)(2n+1)/6 (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Statement-1: int(sinx)^x(xcotx+logsinx)dx=x(sinx)^x Statement-2: d/dx(f(x))^(g(x))=(f(x))^(g(x))d/dx[g(x)logf(x)] (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

A DAS GUPTA-Properties and Application of definite Integrals-EXERCISE
  1. Evaluate the following:int-2^2(|x|+|x-1|)dx

    Text Solution

    |

  2. Prove that inta^b{[x]+[-x]}dx=a-b,where [x]is the greatest integer lex...

    Text Solution

    |

  3. Statement-I int0^9[sqrtx]dx=13, Statement-II int0^(n^2) [sqrt x]dx=(n(...

    Text Solution

    |

  4. Show that: int0^x[x]dx=[x]([x]-1)/2+[x](x-[x]), where [x] denotes the ...

    Text Solution

    |

  5. The value of the integral overset(100pi)underset(0)int sqrt(1-cos2x)" ...

    Text Solution

    |

  6. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  7. Evaluate the following:int0^(10pi)|cosx|dx

    Text Solution

    |

  8. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  9. Show that: inta^bf(x)dx=int(a+c)^(b+c)f(x-c)dx and hence show that int...

    Text Solution

    |

  10. If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove t...

    Text Solution

    |

  11. If f(t) is an odd function, then varphi(x)=inta^xf(t)dx is an even fun...

    Text Solution

    |

  12. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  13. If f(a+x)=f(x), then prove that inta^(n a)f(x)dx=(n-1)int0^af(x)dx whe...

    Text Solution

    |

  14. Evaluate: int0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

    Text Solution

    |

  15. Let a, b, c be non-zero real numbers such that ; int0^1 (1 + cos^8 x)(...

    Text Solution

    |

  16. If f(X) is continuous and ninNthen the value of int-2^2{f(x)-f(-x)}x^...

    Text Solution

    |

  17. An extremum value of y=int0^x(t-1)(t-2)dt is : 5/6 (b) 2/3 (c) 1 ...

    Text Solution

    |

  18. An AC voltage is given by E=E(0) sin(2pit)/(T). Then the mean value of...

    Text Solution

    |

  19. If g(x)=int0^xcos^4tdt , then g(x+pi) equals g(x)+g(pi) (b) g(x)-g(pi...

    Text Solution

    |

  20. The value of int(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

    Text Solution

    |