Home
Class 12
MATHS
Prove that : tan^-1 [frac { (1+x)^(1/2) ...

Prove that : `tan^-1 [frac { (1+x)^(1/2) - (1-x)^(1/2)}{ (1+x)^(1/2) + (1-x)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^-1 [frac { (1+z)^(1/2) - (1-z)^(1/2)}{ (1+z)^(1/2) + (1-z)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1 (z) .

Prove that : (sinx)/(1+cos x)= tan frac (x)(2) .

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Prove that : sqrt((1-cos frac (5pi)(3))/2) =1/2 .

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that : 1/2 tan^-1x = cos^-1{(1+sqrt(1+x^2))/(2sqrt(1+x^2))}^(1/2)

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .