Home
Class 12
MATHS
sin^-1 x+ sin^-1 y = sin^-1[x sqrt(1-y^...

`sin^-1 x+ sin^-1 y = sin^-1[x sqrt(1-y^2) + y sqrt( 1- x^2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin^-1x , then

If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))] find dy/dx

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Find dy/dx if y = sin^-1[(6x-4sqrt(1-4x^2))/5]

Find dy/dx if y = sin^-1x + sin^-1 sqrt(1-x^2) , 0ltxlt1

Find dy/dx when y = sin^-1 (1/(sqrt(1+x^2))) + tan^-1 (sqrt(1+x^2)-1)/(x)), x > 0

Differentiate y with respect to x, where [y= tan^-1 { sqrt(1+sin x) + sqrt(1- sin x)} / {sqrt (1+ sin x) - sqrt(1- sin x)}]

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to