Home
Class 12
MATHS
If [[x+3,z+4,2y-7],[4x+6,a-1,0],[b-3],[3...

If `[[x+3,z+4,2y-7],[4x+6,a-1,0],[b-3],[3b],[z+2c]]`=`[[0,6,3y-2],[2x,-3,2c+2],[2b+4],[-2],[0]]`, obtain the values of a, b, c, x, y and z.

Promotional Banner

Similar Questions

Explore conceptually related problems

If [[x+3,z+4,2y-7],[4x+6,a-1,0],[b-3,3b,z+2c]]=[[0,6,3y-2],[2x,-3,2c+2],[2b+4,-21,0]] , obtain the values of a,b,c and x,y and z.

Use product [[1,-1,2],[0,2,-3],[3,-2,4]][[-2,0,1],[9,2,-3],[6,1,-2]] to solve the system of equations x-y+2z = 1, 2y - 3z = 1, 3x-2y+4z = 2

If A=[{:(1,-2,0),(2,1,3),(0,-2,1):}],B=[{:(7,2,-6),(-2,1,-3),(-4,2,5):}] , find AB Also solve x-2 y=10, 2x+y+3z=8, -2y+z=7

Use product : {:[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)] to solve the system of equations: x-y+2z=1,2y-3z=1,3x-2y+4z=2

Find equation of angle bisector of plane x+2y+3z-z=0 and 2x-3y+z+4=0 .

If x != y != z and |[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]]|=0 then using properties of determinants, show that xyz= -1.

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0