Home
Class 12
MATHS
The value of |[[1,x,y+z],[1,y,z+x],[1,z,...

The value of `|[[1,x,y+z],[1,y,z+x],[1,z,x+y]]|` is

A

x+y+z

B

1

C

0

D

xyz

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the det. |[x+y,y+z,z+x],[z,x,y],[1,1,1]| is

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3

Find the values of x, y, z if the matrix A = [[0,2y,z],[x,y,-z],[x,-y,z]] satisfy the equation A'A = I

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

Write the value of Delta = |(x+y, y +z , z +x),(z, x,y),(-3,-3,-3)|

Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,z],[x,y,a+z]]|=a^2(a+x+y+z)

Prove that : |[x+y+z,-z,-y],[-z, x+y+z, -x],[-y,-x,x+y+z]|= 2(x+y)(y+z)(z+x)

Show that: |[x-y-z,2x,2x],[2y,y-z-x,2y],[2z,2z,z-x-y]|=(x+y+z)^3

If x != y != z and |[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]]|=0 then using properties of determinants, show that xyz= -1.