Home
Class 12
MATHS
Prove that |[[x,y,z],[x^2,y^2,z^2],[x^3,...

Prove that `|[[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]]|= xyz (x-y)(y-z)(z-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, prove the following |(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=xyz(x-y)(y-z)(z-x)

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Prove that: {:|(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=|(x,x^2,x^3),(y,y^2,y^3),(z,z^2,z^3)| = xyz(x-y(y-z)(z-x)

Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,z],[x,y,a+z]]|=a^2(a+x+y+z)

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

Prove that : |[x+y+z,-z,-y],[-z, x+y+z, -x],[-y,-x,x+y+z]|= 2(x+y)(y+z)(z+x)

Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+z)

Show that |(1,x^2,x^3),(1,y^2,y^3),(1,z^2,z^3)| = (x-y),(y-z)(z-x)(xy+yz+zx)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)