Home
Class 12
MATHS
Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1...

Prove that `|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Using the property of determinants and without expanding , prove that: |[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b]| = 0

Prove that: |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Without actual expansion, prove that the following determinants vanish: {:|(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)|

Evaluate : triangle = |[1,a,bc],[1,b,ca],[1,c,ab]|

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2