Home
Class 12
MATHS
If x != y != z and |[[x,x^2,1+x^3],[y,y^...

If `x != y != z` and `|[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]]|=0` then using properties of determinants, show that xyz= -1.

Promotional Banner

Similar Questions

Explore conceptually related problems

If xneynez and |[x,x^3,x^4-1],[y,y^3,y^4-1],[z,z^3,z^4-1]|=0 , then prove that : xyz(xy+yz+zx)=x+y+z

If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

If x,y,z are different and Delta= {:|(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|=0 , show that xyz=-1

Using the properties of determinants, show that : |[[x, y, z],[x^2, y^2, z^2],[x,y,z]]|= 0 .

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3

Use properties of determinants ot evaluate: {:|(x+y,y+z,z+x),(z,x,y),(1,1,1)|

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Prove that |[[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]]|= xyz (x-y)(y-z)(z-x)

Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]| = (1+pxyz)(x-y)(y-z)(z-x)