Home
Class 12
MATHS
Without expanding the determinant, show ...

Without expanding the determinant, show that : `(frac{1}{x}+frac{1}{y}+frac{1}{z}+1)` is a factor of : `|[[1+x,1,1],[1,1+y,1],[1,1,1+z]]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding the determinant, show that : (frac{1}{p}+frac{1}{q}+frac{1}{r}+1) is a factor of : |[[1+p,1,1],[1,1+q,1],[1,1,1+r]]

Without expanding the determinant, show that : (frac{1}{a}+frac{1}{b}+frac{1}{c}+1) is a factor of : |[[1+a,1,1],[1,1+b,1],[1,1,1+c]]|

sin^-1 (frac{1}{2}) is equal to :

tan^-1(frac{1}{ 3}) -cot^-1(-frac{1}{ 3}) is equal to :

Find d.r. of the line frac{4-x}{2}=frac{y}{6}=frac{1-z}{3}

tan^-1 frac{1}{sqrt3} + cos^-1 frac{1}{ 2} is equal to :

2tan^-1 frac{1}{3} + tan^-1 frac{1}{7}= frac {pi}{4}

Show that : tan^-1 frac{1}{2} + tan^-1 frac{1}{4}=frac{1}{2} cos^-1 frac{13}{85}

Show that : tan^-1 frac{1}{2} + tan^-1 frac{1}{5}=frac{1}{2} cos^-1 frac{16}{65}

Show that: tan^-1 (frac {1-x}{1+x})= frac {1}{2} tan^-1(frac{1-x^2}{2x}), x>0