Home
Class 12
MATHS
Prove that:|[a^2+1,ab,ac],[ab,b^2+1,bc],...

Prove that:`|[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)