Home
Class 12
MATHS
Prove that: |[x+4,2x,2x],[2x,x+4,2x],[2x...

Prove that: `|[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants, show that : |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]| = (5x+4)(4-x)^2

Using the propertis of derminants, prove tha |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x+4)(4-x)^(2)

By using properties of determinants, show that |{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=(5x+4)(4-x)^(2)

Prove that: |[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3 .

Prove that cos4x = 2cos^2(2x) - 1

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,x+2b],[x+4,x+5,x+2c]| is:

If [[2,3],[4,5]]=[[x,3],[2x,5]] , then x =

Solve the equatioin |x-|4-x||-2x=4